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Abstract 
Drought has gripped the arid American West in the Colorado River Basin since 2000. 

The majority of water consumed in the region is used by agricultural irrigation. Farm operations 

in central Arizona rely on a combination of local surface water, groundwater, the mainstem of 

the Colorado River, and Colorado River water imported to central Arizona through the Central 

Arizona Project (CAP). Groundwater is particularly important to agricultural viability because of 

its widespread availability. In previous decades, the abundance of this resource caused pumping 

rates to exceed replenishment resulting in water table declines in central Arizona. CAP water 

was made available for crop irrigation under financial arrangements that made it affordable to 

farmers and CAP use replaced much of their groundwater pumping. The recent federal 

declaration of a Colorado River shortage may prompt farmers to supplement reduced surface 

water with more groundwater.  

This study examines agricultural water use and crop mix selection in the major irrigation 

districts of central Arizona. It is important to study these decisions that affect the rate of 

groundwater consumption. Statistical models of crop mix and agricultural water deliveries are 

developed for a major Arizona crop, alfalfa, in the Phoenix, Pinal, and Tucson Active 

Management Areas (AMAs). Using panel data from 2008-2020, economic and climatic variables 

(crop prices, crop yields, water prices, temperature, and precipitation) are examined for effects 

on farmers’ water application, acreage, and crop mix decisions. Contributions of this work 

include an analysis of the Tucson AMA, federal commodity programs, and temperature and 

precipitation effects. Climate, federal commodity payments, and the gross revenues of crops 

have significant impacts on central Arizona crop mix. Irrigation district water deliveries are 

affected by the climate and the gross revenue of cotton plus wheat. Findings from this study can 

help inform recommendations for managing the impacts of impending changes in central 

Arizona’s agricultural CAP supplies. 
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Chapter 1: Introduction 
In the arid American west, water is a scarce resource. Efficient and effective management 

is becoming more necessary in all sectors, as the region battles through a prolonged drought. 

Agricultural production is not exempt from water supply issues especially considering its 

majority share of total consumption. The agricultural sector consumes nearly three-fourths of 

Arizona’s total water resources annually (Bae & Dall’erba, 2018). Typically, Arizona 

agricultural growers get their irrigation water from local surface water, groundwater, the 

mainstem of the Colorado River, and Colorado River water imported to central Arizona through 

the Central Arizona Project (CAP). The August 2021 federal Colorado River shortage 

declaration by the Bureau of Reclamation resulted in a 512,000 acre-feet (AF) reduction in 

Colorado River water deliveries to Arizona through the CAP. Central Arizona farmers will be 

the first to bear this water supply reduction and may supplement by using more groundwater. 

However, groundwater is already pumped at rates that exceed replenishment leading to a host of 

economic and environmental effects from overdraft in central Arizona. Water application and 

crop mix decisions affect the rate at which farmers may move to consume additional 

groundwater resources. 

A study of agricultural water use in the arid central Arizona region is important because 

the decisions of these agricultural water users will affect future generations in both the urban and 

rural agricultural sectors. Within the CAP service region, groundwater still accounts for 40% of 

total water used (Ferris & Porter, 2021). Despite Arizona’s Groundwater Management Act and 

limits on groundwater withdrawals, the lack of strict extraction rights that consider hydrologic 

conditions has led to an exploitation of the resource (Bruno & Jessoe, 2021). The overextraction 

of the resource leads to a range of externalities for groundwater users and non-users alike. High 

rates of extraction have caused water tables to decline, pumping costs to rise, and land to subside 

(Bruno & Jessoe, 2021). In certain parts of Maricopa and Pinal counties, land has subsided more 

than eighteen feet since the early 1900s (Yoo & Perrings, 2017). The environmental and 

financial impacts from land subsidence can be substantial as damage can occur to roads, 

buildings, and gas and water pipes (Yoo & Perrings, 2017). 

This study starts with a brief description of the study area and the methods and data used 

to evaluate agricultural water use and crop mix decisions along with the key findings. The 
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history of Arizona water policy and agricultural water use is discussed in a review of existing 

literature of Arizona water management. It then provides a review and summary of relevant 

economic literature on agricultural water management studies. Next, a conceptual model of 

agricultural production and irrigation water demand is developed to guide later econometric 

analysis. A discussion on the data and methods employed in this study follows. The next section 

details the final econometric models estimated and the results of these regressions. The study 

concludes with a discussion on the policy implications of the results found. 

1.1 Study Area 
Having established the challenges faced by arid agriculture, this study aims to examine 

the effects of economic and climatic variables on agricultural water and crop mix decisions in 

fourteen central Arizona irrigation districts in the Phoenix, Pinal, and Tucson Active 

Management Areas (AMAs). The irrigation districts located in the AMAs included in this study 

represent the largest and most significant irrigation districts in terms of planted acreage and 

water deliveries. Even within these fourteen largest irrigation districts there is a great diversity of 

size, policy structure, water sources, and end users (agricultural, municipal, industrial, etc.). 

Regardless of their differences, the irrigation districts share the common purpose of delivering 

water to individual water users within their boundaries. Irrigation district water demand can be 

thought of as the sum of all individual users’ demand within the district. Since all irrigation 

districts within this study are located within one of three central Arizona AMAs, they are all 

subject to certain regulations under the Groundwater Management Act (GMA). Districts are 

required to submit annual water use reports detailing sources and deliveries to the Arizona 

Department of Water Resources (ADWR). ADWR makes these reports public allowing for this 

analysis. Irrigation districts outside of AMAs are not subject to the same water use reporting 

guidelines and therefore cannot be included in this study. The GMA of 1980 governs 

groundwater use in AMAs to try and slow the effects of groundwater overdraft. Irrigation 

districts are constrained by groundwater rights allocated under the GMA. They also notably 

source Colorado River through the CAP. This resource is now further constrained by federal 

drought declarations affecting growers’ water sourcing decisions. 

Not all irrigation districts in the state of Arizona and within the three AMAs of interest 

are included in this study. The districts chosen were included because they represent the majority 
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of water deliveries and planted acreage in the study area. Only irrigation districts located within 

an AMA are included in this study because they are subject to water use reporting requirements 

that enable this study. This means that tribal agriculture and water use cannot be included 

because data are unavailable or limited due to different reporting requirements. The included 

irrigation districts also have access to Colorado River water delivered through the CAP giving 

them some flexibility in their water sourcing decisions. The Phoenix AMA contains thirty-nine 

irrigation districts, ten of which are included in this study (Arizona Department of Water 

Resources, 2020). The ten districts in order of size are Salt River Project, Roosevelt Water 

Conservation District, Roosevelt Irrigation District, Maricopa Water District, New Magma 

Irrigation and Drainage District, Buckeye Water Conservation and Drainage District, Queen 

Creek Irrigation District, Arlington Canal Company, Tonopah Irrigation District, and San Tan 

Irrigation District. These districts represent the majority of water deliveries and agricultural land 

in the Phoenix AMA. They exhibit a great range both in the size of districts and the agricultural 

water deliveries. The three smallest districts in terms of area in the study are located in the 

Phoenix AMA along with the biggest district, the Salt River Project (SRP) (Table 3). In total, 

these ten districts deliver a combined average of over 550,000 AF a year to agriculture each year. 

Some districts in the region have shifted from an agricultural focus to a more municipal centered 

focus as urbanization has taken over in the region.  

The Pinal AMA is much more agriculturally focused and includes the two districts with 

the highest agricultural water deliveries. The three Pinal AMA districts in order of size are the 

Central Arizona Irrigation and Drainage District (CAIDD), Maricopa-Stanfield Irrigation and 

Drainage District (MSIDD), and Hohokam Irrigation District. The CAIDD and MSIDD together 

account for more agricultural water deliveries than the ten Phoenix AMA irrigation districts 

combined. The San Carlos Irrigation and Drainage District (SCIDD) is also located within the 

Pinal AMA but is ultimately excluded from the final econometric analysis as it is in a unique 

position because of its organizational purpose and the precarious nature of its main water source 

in San Carlos Lake. The structural differences between SCIDD and the other fourteen districts in 

this study are significant. The peculiarities of the SCIDD and its effect on water delivery and 

crop mix estimation is discussed in greater detail in Appendix A.2. 
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The Tucson AMA only has one irrigation district. The Cortaro-Marana Irrigation District 

(CMID) is one of the smaller districts included in this study with an average of 37,718 AF of 

agricultural deliveries each year. 

Agricultural production in the study area is dominated by alfalfa and cotton. Table 4 

shows the average acres and percentage of major crop categories planted in the fourteen 

irrigation districts examined in this study. The two most common crops display some differences 

that farmers must consider when determining crop mix. Alfalfa is the most commonly planted 

crop as its profitability has increased in recent years. It accounts for an average of 53% of all 

planted acres in the study region. Unlike many other crops which are planted annually, a stand of 

alfalfa is productive for 5-7 years with multiple cuttings within a season. Alfalfa must be 

irrigated year round making it one of the more water intensive crops in the region when 

considered alone. Its needs average 6 AF per acre per year (Erie et al., 1982). The perennial 

nature of alfalfa is important to remember when evaluating models of crop mix decisions, since 

only 15-20% of the total alfalfa acreage would be up for rotation in a given year. Alfalfa farmers 

may therefore have a lower level of flexibility compared to annual crop farmers. This effect is 

further discussed in Chapters 5 and 6. 

The second most commonly planted crop, cotton, is less water intensive than alfalfa with 

an average need of 3.5 AF per acre per year. However, cotton is not grown year round and is 

often grown in rotation with another crop such as wheat which consumes 2 AF of water per acre 

per year (Ottman, 2015; Erie et al., 1982). When considering cotton and the crops it is planted in 

rotation with, its water needs are similar to alfalfa’s. Cotton and winter wheat are considered 

together in the water delivery and crop mix models to reflect this aspect of agricultural planting 

decisions. 

Other categories of crops grown in the study region include grains (corn, sorghum, 

barley, wheat), tree crops (especially nut trees), and other crops (melons, lettuce, etc.) (see Table 

5 for cropping categories). In some irrigation districts, grains are grown at the same rate as 

cotton, and some are rotated on the same land as cotton. The CMID has the highest average share 

of grains planted. Even though these other crops affect agricultural water consumption in the 

study region, the study focus remains on alfalfa and cotton (in rotation with winter wheat) 

because of their consistent prevalence. 
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1.2 Data and Methods 
In order to examine the agricultural water and crop mix decisions in central Arizona 

AMAs, this study uses annual state, county, and irrigation level economic and climatic data from 

2008-2020. The ADWR posts the detailed annual reports of irrigation district water use that act 

as the source of water delivery data in this study. Information on the source types and end use 

categories are included allowing for the focus on agricultural water deliveries. The United States 

Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS), the CAP, 

the United States Energy Information Administration (EIA), and the New York Cotton Exchange 

provide crop price and input cost data. An important component of this study is the land cover 

data sourced from the USDA NASS’s Cropland Data Layer (CDL). The CDL provides annual 

satellite records of land cover of the continental United States. Arizona cover has been available 

since 2008 which is the reason for this study period beginning in 2008. Climate effects are 

estimated separately through annual county average temperature and precipitation reported by 

the West Wide Drought Tracker which uses climate data from PRISM and the National Weather 

Service Cooperative Observer Network (West Wide Drought Tracker, 2022). Precipitation is 

especially important because it impacts soil moisture which affects crop yield (Earth Observing 

System, 2019). Another key variable included in this study is a measure for federal cotton 

commodity payments. The Environmental Working Group (EWG) collects county level crop 

insurance and federal farm payment program information from the USDA Risk Management 

Agency and summarizes it into basic program categories. A more detailed discussion of these 

data, their sources, and their construction follows in Chapter 4. 

The estimated regressions in this study use the percentage of planted acreage with alfalfa 

to evaluate crop-mix decisions. Different iterations of the crop mix model are estimated to test 

the statistical significance of a combination of various economic and climatic effects including 

average annual precipitation and temperature, federal cotton commodity payments, crop prices, 

diesel prices, and crop gross revenues. The functional form of the models estimated is especially 

crucial to the effects of the crop mix models where the dependent variable is a proportion, 

continuous but bounded by zero and one. This study uses Ordinary Least Squares (OLS) 

regressions to estimate crop mix, but alternative logit models are considered and discussed 

further in Chapter 5.  
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OLS regressions are also used in the estimation of agricultural water delivery models. 

Many of the same independent variables are included in the water delivery models as in the crop 

mix regressions such as precipitation, temperature, diesel prices, crop prices, and gross revenues. 

Some additional variables (CAP water prices and crop acreage) are also evaluated. The details of 

model specifications are discussed in Chapter 5 and 6. 

The diversity of irrigation district structures and sizes affects the efficiency of the OLS 

regression estimates. To deal with this issue, irrigation district level fixed-effects are employed 

through the demeaning approach. This approach uses “demeaned” observations where the 

irrigation district level mean is subtracted from each observation to focus on the trends over time 

and not differences between districts. This solves the issue of heteroskedastic error terms and 

accounts for time-invariant variation between irrigation districts. Further detail and explanation 

of this process is included in Chapter 6.  

1.3 Key Findings 
The results of the econometric models estimated in Chapters 5 and 6 of this study provide 

information on which economic and climate factors influence crop mix and agricultural water 

use decisions. The fixed-effects model results presented in this thesis are the most reliable, 

useful, and statistically significant of the various regression models estimated in this study.  

In the percent alfalfa acreage model, all four independent variables, precipitation, federal 

cotton payments, gross revenue of alfalfa, and gross revenue of cotton plus wheat, are 

determined to be statistically significant at a minimum of a 90% confidence level. Variables are 

lagged by one year in the crop mix models, because farmers must make crop decisions at the 

beginning of the year before conditions become clear. As annual precipitation increases, the 

proportion of alfalfa planted also increases. Federal payments to cotton disincentivizes farmers 

from planting alfalfa and draw them to plant more cotton. An increase in the gross revenue of 

alfalfa indicates an increase in the percentage of alfalfa planted. Increases in the gross revenue of 

cotton and wheat has the opposite effect on the share of alfalfa acreage.  

In the estimated water deliveries model, current year variables are included because of 

the more flexible nature of the water ordering schedule as farmers can adapt their water 

application rates over the growing season.  Both temperature and precipitation are included as 
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climatic measures but only precipitation is statistically significant predicting decreases in water 

deliveries as precipitation increases. It may be that precipitation, an indicator of soil moisture, is 

more impactful to agricultural decisions than temperature. CAP water prices do not have a 

significant effect on water deliveries indicating that farmers may have inelastic price elasticity of 

water demand. The gross revenue of alfalfa does not significantly affect agricultural water 

deliveries, but the gross revenue of cotton and wheat have a statistically significant positive 

effect. The implications of these results are further discussed in Chapters 6 and 7.  
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Chapter 2: Literature Review 
 This study of agricultural water use and crop mix decisions is informed by a review of 

recent economic literature on water policy, agricultural water use, and surface and groundwater 

demand studies. The chapter begins by providing a summary of the history and legal framework 

of water management and agricultural use in Arizona. An array of econometric literature on 

water cutbacks and groundwater management in the American West is next in the discussion. 

The inclusion of a novel federal cotton commodity variable is supported by literature on federal 

commodity programs. Also highlighted is the role the USDA Cropland Data Layer has begun to 

play in economic literature. Finally, the summary of the literature ends with sources that guided 

the modeling of fixed-effects. This chapter concludes with a discussion on the contributions from 

this work.  

2.1 Arizona Water Policy  
Arizona was granted Colorado River water rights in 1922 but was unable to use much of 

its 2.8 million acre-feet (MAF) allotments without the infrastructure to move the water inland 

where the greatest demand was. The Central Arizona Project (CAP) enables water to be moved 

from the western side of the state to central Arizona for urban and agricultural uses. The 

legislature that authorized the development of the CAP required that CAP water rights be junior 

to all existing rights meaning Arizona would be the first to bear delivery cuts in times of drought 

and shortage in the Colorado River Basin (CRB). Additionally, before construction was 

complete, the Secretary of the Interior required that Arizona adopt a statewide groundwater 

management code because of high overdraft (Shipman & Wilson, 2014). Between 1940-1953, 

Arizona groundwater overdraft averaged 2.3 MAF annually. The Groundwater Management Act 

(GMA) was passed in 1980 to curtail this type of overdraft and secure federal funding for the 

CAP. The GMA created Active Management Areas (AMAs) in zones where expansion of 

agriculture is prohibited, wells are regulated, sales of land must have a 100-year assured water 

supply, and a long-term groundwater management goal is set (Ferris & Porter, 2021). The 336 

mile long CAP was completed in 1993 (Lahmers & Eden, 2018). The goal of the CAP was to 

prompt growers to use more renewable surface water, but high costs prohibited the switch until a 

target pricing scheme made the CAP water more affordable (Shipman & Wilson, 2014; York et 

al., 2020). The CAP delivers 1.6 MAF of Colorado River water to central Arizona each year 



17 
 

(Anderies et al., 2020). Arizona’s remaining Colorado River allotment is used by agricultural and 

urban users along the Colorado River on the western side of the state. Arizona’s total demand is 

typically 6.8 MAF annually (Anderies et al., 2020).  

The four sectors of water use for monitoring under the GMA are: 1) indigenous water use 

(Indian), 2) non-Indian agriculture, 3) industrial uses, and 4) municipal uses (York et al., 2020). 

Agriculture is the greatest contributor to unreplenished groundwater use in the Phoenix, Pinal, 

and Tucson AMAs (Ferris & Porter, 2021). While agriculture, both Indian and non-Indian, uses 

the greatest share of water, it also contributes to return flows and recharges that are vital for state 

conservation goals (York et al., 2020). 

Producers in central Arizona source their water from groundwater, surface water from the 

Salt and Gila Rivers, and Colorado River water delivered through the CAP (York et al., 2020). 

Groundwater provided 40% of water in the CAP service area in 2019 (Ferris & Porter, 2021). 

Historical irrigation use from 1975-1980 in the AMAs was used as the basis for quantified water 

rights under the GMA and granted an Irrigation Grandfathered Right to the farmer. Farmers may 

bank unused groundwater credits for future use.  

Although there is a hydrologic connection between groundwater and surface water, 

Arizona has not managed the resources conjunctively. Groundwater was often managed through 

English common law traditions of granting rights to landowners above aquifers demonstrating 

beneficial use. Prior appropriation rights are granted for surface water. Indigenous peoples have 

recently begun to fight for quantified water rights in courts. Since indigenous people were the 

first to use the water, they are granted water rights with the most senior priority dates. These 

Winters rights cannot be forfeited for non-use either. Water may be leased off tribal lands in 

Arizona under the Arizona Water Settlements Act of 2004. Tribes receive 46% of CAP water in 

Arizona with nearly 100% going to agricultural uses, so these types of collaborations are vital to 

the Arizona economy as a whole (York et al., 2020). 

Agricultural water users must comply with a water duty limit (base program) set by the 

Arizona Department of Water Resources (ADWR) that is reduced with each new management 

period (Ferris & Porter, 2021). The allotments were set above actual usage for many of the 

agricultural producers enabling them to bank their unused portion in flex credit accounts. By the 

end of the Second Management Plan, over 15 MAF had been banked in flex credit accounts by 
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farmers. The Arizona State Legislature amended the GMA in 2002 to include a best management 

practices (BMP) program as a voluntary alternative to the Base Program requirements. Farmers 

could ignore the Base Requirement allotments by giving up their flex credit balances so long as 

the BMP program was found to be at least as water conserving (Bilby & Wilson, 2013). 

However, BMP farmers in the Phoenix AMA typically apply 18% more water than non-BMP 

farms (Ferris & Porter, 2021). 

Groundwater regulations will become even more important as the Colorado River region 

is expected to face further strain on their water resources as demand grows with population 

growth and supply decreases due to climate changes and limited storage abilities. Arizona will be 

first to bear the reductions, especially in the agricultural sector as they are counted upon to adapt 

usage to protect municipal and industrial (M&I) uses (Bickel et al., 2019). Lahmers & Eden 

(2018) explore how these reductions will likely push central Arizona growers back to 

groundwater. Continued overdraft can lead to higher pumping and drilling costs for growers. 

Environmental consequences such as land subsidence, reduced aquifer storage capacity, damage 

to canals and well casings, and regional and local flooding may become more prominent 

(Lahmers & Eden, 2018). 

Ferris and Porter (2021) describe the political history of the GMA. Its regulations have 

helped slow the effects of overextraction, but pumping rates are still unsustainable in general. 

The safe-yield goal for AMAs states AMAs should achieve a balance between the amount of 

groundwater withdrawn and the amount replenished by 2025. Ferris and Porter (2021) report that 

the AMAs will not be able to reach that goal in three years or sustain it. The GMA and the BMP 

program is evaluated by Bilby & Wilson (2013) using a case-study approach. The BMP was 

developed in collaboration with an informal group of ADWR staff, irrigation district managers, 

and farmers. Farmers must earn a total of ten enrollment points from the four BMP categories: 

Agronomic Management, Water Conveyance Systems, Farm Irrigation Systems, and Irrigation 

Water Management to qualify. Bilby and Wilson found that 70% of farmers needed no 

adjustments in their water management practices or irrigation systems to qualify for the BMP 

program. These farmers were often already using water conservation technologies and practices 

that qualified them for the BMP program and allowed them to circumvent the GMA water 



19 
 

allotment requirements. Water savings through the BMP program therefore were negligible 

(Bilby & Wilson, 2013).  

The effects of these negligible water savings are becoming evident in the Colorado River 

reservoirs. The Department of the Interior developed thresholds for tiers of drought as measured 

by the water levels in Lakes Powell and Mead in 2007. The Lower CRB states adopted the 

Drought Contingency Plan (DCP). Part of the DCP includes the introduction of a new “Tier 

Zero” drought declaration set at 332 meters above sea level. When Tier Zero is initiated, more 

severe water cuts are triggered. The goal of the DCP is to raise water levels through conservation 

efforts. The first Tier Zero shortage went into effect in August 2019 based on predicted water 

levels. Water availability was affected, and farmers had to deal with the new shortage (York et 

al., 2020). In August 2021, the US Bureau of Reclamation announced the first Level 1 shortage 

for Lake Mead. Arizona will see a 512,000 AF (18% of state’s annual apportionment) reduction 

in deliveries in 2022 (Aaron & Bryant, 2021). 

2.2 Central Arizona Agricultural Water Use 
There is a long history of irrigated agriculture in Arizona dating back to 1200 BCE along 

the Santa Cruz River. Since then, indigenous communities have participated in irrigated 

agricultural activities (Lahmers & Eden, 2018). Colonial settlors gained greater shares of 

agricultural activities throughout the past two centuries. Today, agriculture consumes the 

majority (73%) of water available in Arizona. In 2010, total agricultural water use equaled 6 

MAF (Bae & Dall’erba, 2018). Compared to other sectors within Arizona, $1 of agricultural 

production requires 43 times the amount of water needed for $1 of production in the industry and 

service sectors (Bae & Dall’erba, 2018).  

Bae and Dall’erba (2018) simulate three scenarios with the goal of achieving 19% of 

water savings in Arizona agriculture. The approaches include improving irrigation efficiency, 

price increases, or reduced crop exports. Irrigation efficiency improvements are found to be the 

cheapest solution. In a real world setting, a combination of these three strategies may be 

employed in addition to other strategies not evaluated like changing crop mixes. The authors 

estimate water consumed by agriculture in the United States and the share of water that is then 

“virtually” traded through agricultural exports. Virtual water is defined by Bae and Dall’erba as 

the volume of water embodied in the production process of a good. Exported crops are not a 



20 
 

significant share of good produced in Arizona (0.47%), but they account for 57.86% of overall 

water available through direct virtual water. Only 15.28% of Arizona’s water stays in the state 

post-production even though 73.13% is used in agricultural production. Bae and Dall’erba (2018) 

develop an economic input-output model to calculate the virtual water flows associated with 

Arizona’s (net) trade. 

Pinal County is a major agricultural producer for both the state of Arizona and the entire 

U.S. It ranks in the top 2% of all U.S. counties in the total value of agricultural sales (Bickel et 

al., 2018). It should be noted that Arizona counties are typically much larger in size that those in 

other states. This is likely to inflate the national influence of agricultural production in central 

Arizona counties. In Maricopa County, agriculture was estimated to contribute $1.95B in 2015 

(York et al., 2020). Because precipitation in the region is so scarce (8-10 inches per year), 

farmers rely on groundwater and surface water delivered through the CAP to irrigate. Agriculture 

used 96% of the Pinal County water through 2001-2005 (Bickel et al., 2019).  

Pinal County’s agricultural contributions are further analyzed by Bickel et al. (2018). 

Farms in Pinal County range from small family- or individually-owned operations to large scale 

corporate operations. These larger farms make up a smaller share of all farms (23%) but account 

for nearly all sales (98%). The construction of the CAP enabled the development of agriculture 

in Pinal County and helps it to continue to thrive as an agricultural powerhouse. Cotton is the top 

crop in Pinal County by acreage and value of sales. Pinal County produces 42% of Arizona’s 

cotton and is ranked 5th in the nation for cotton and cottonseed sales. In 2016, the total estimated 

contribution from on-farm agriculture was estimated to be $1.1 billion, $908.1 million of which 

was in direct sales. Nine of the top twenty industries in Pinal County are agriculture or 

agriculture-related industries. Altogether, summing the direct, indirect, and induced effects, the 

total contribution of on-farm agriculture and agribusiness to Pinal County’s output was nearly 

$2.3 billion in total sales in 2016 (Bickel et al., 2018).  

 Water use is an important input in agriculture and irrigation has become more efficient 

over time especially for the top crops. The irrigation application intensity (the amount of water 

applied per unit of land area) has continued to decrease in Arizona. The reduction in water 

consumption has not affected crop productivity which has actually increased (Bickel et al., 

2018). Agricultural producers wield a great deal of power when it comes to decisions regarding 
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the development of water infrastructure and regulations. York et al. (2020) show the current 

institutions are not effective in reaching water conservation goals using a socio-hydrological 

framework. Growers must make decisions according to the social and hydrological risks and 

institutions in their environment.  

Irrigated agricultural water decisions in the arid southwestern US is the focus of a study 

by McGreal and Colby (2022). The two examine the drivers of water deliveries and irrigation 

intensity in twelve irrigation districts in two central Arizona AMAs. This includes the effects of 

climatic, economic, and remote sensed land cover variables. Alfalfa, cotton, and wheat are the 

most common crops planted in the region. McGreal and Colby use irrigation district level fixed-

effects models to estimate water deliveries and irrigation intensity. The authors find that drought, 

cotton prices, and CAP water prices can all be significant in explaining water deliveries and 

irrigation intensity. Additionally, they name crop mix as one of the major determinants of water 

deliveries (McGreal & Colby, 2022). 

2.3 Studies of Demand Responses to Surface Water Cutbacks 
With the recent 512,000 AF reduction in Arizona’s Colorado River surface water 

deliveries, central Arizona growers will be responsible for bearing the brunt of this cutback. The 

impacts of both hypothetical and actual surface water cutbacks have been examined by Anderies 

et al. (2020), Bickel et al. (2018), Bickel et al. (2019), and Goemans and Kelley (2022). This 

breadth of literature informs this work in how growers can be expected to react to cutbacks and 

the strategies they might employ to achieve consumption reductions. 

Anderies et al. (2020) examine the effects from a decline in the CAP water deliveries in 

the Salt, Verde, and Aqua Fria basins in central Arizona. The authors use infrastructure 

management as a tool to reach groundwater neutrality introducing the concept of coupled 

infrastructure systems (CIS). The CIS includes hard infrastructure (pipes, dams, aqueducts, etc.), 

soft infrastructure (rules and norms), and natural infrastructure (aquifers, groundwater recharge 

basins, and river watersheds). Anderies et al. develop a dynamic model to review the 

relationships between the various water basins and sources in the Central Arizona Region and 

how interdependencies among different classes of infrastructure can impact regional climate 

responses. Instead of focusing on each industry’s response individually, the authors present a 

collectively beneficial solution for all stakeholders together. They find that a 15% reduction of 
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runoff from Lakes Powell and Mead trigger groundwater depletion rates equal to the volume of 

Lake Powell every half century (Anderies et al., 2020). The more collaborative a system is, the 

more resilient it is to drought. 

 In the previously mentioned Bickel et al. (2018) study, the authors evaluate the effects of 

a hypothetical 300,000 AF reduction of irrigation water in Pinal County. Farmers can respond 

through crop mix decisions by reducing acreage grown and harvested. Regardless of the crop 

fallowed, there will be decreased sales from decreased production. The economy is affected by 

lower spending on inputs and labor. Six fallowing scenarios are defined and examined with 

different mixes of wheat, cotton, and alfalfa acreage fallowed. Alfalfa crops require the most 

water applied so scenarios where alfalfa acreage is fallowed need the least total acres fallowed, 

but the gross sales for alfalfa were highest. These scenarios then have the biggest losses in the 

sales category. Fallowing only cotton generates the biggest losses to value added, labor income, 

and employment. Losses are smallest when all wheat crops and half of alfalfa crops are chosen 

for fallowing, but this is not a realistic solution. 

Possible fallowing solutions are also explored in Bickel et al.’s (2019) evaluation of 

strategies for addressing surface water cutbacks in Pinal County. The authors employ rationing 

and input-output models to detail impacts on stakeholders throughout the economy. The 

rationing models introduced first require less complicated calculations and have modest data 

requirements lending them to be easier to interpret by non-economists. Bickel et al. build upon 

these models to develop the input-output model. These conceptual models are applied 

empirically to Pinal County. A reduction shock in the water supply is applied to evaluate the 

modeling approaches. A “putty-clay” production function approach (where producers face 

flexible and inflexible decisions) is the basis for rationing models. Growers respond to water 

cutbacks differently depending on the time frame. Fallowing decisions are easily made and 

implemented but shifting cropping patterns would take more forethought. The rationing models 

presented by Bickel et al. (2019) approach the fallowing decision by ranking the crops and 

fallowing those that do the worst. Rankings are based on gross revenue per AF of water or net 

income per AF of water. Gross revenues are easy to calculate, but net income provides a better 

measure of losses to both farmers and farm workers. Rationing models may not be sophisticated 

enough to give accurate estimations of the total amount of cropland fallowed, but they are 
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reliable in telling which crops will face cutbacks first. If the gross revenue is the deciding factor 

for fallowing, Bickel et al. find wheat would be fallowed first then alfalfa. But it the production 

cost savings are considered, then producers would choose to fallow cotton acres first to achieve 

water savings (Bickel et al., 2019).  

Goemans and Kelley (2022) investigate the different methods of water savings to free up 

water for farmers to engage in temporary transfers while considering risk impacts. The authors 

compare the expected profitability, risk premiums, and potential water savings for 13 different 

irrigated cropping activities in Colorado. Transfers of water from agriculture become 

increasingly necessary as urban centers grow. The temporary nature of these transfers can 

alleviate some of the negative environmental and socioeconomic impacts from permanent dry-

up. Temporary water transfers allow water rights to remain attached to the land and holders 

retain ownership. Goemans and Kelley examine crop switching, harvest modifications, limited 

irrigation, and rotational fallowing as means to save water. Before crop production begins, the 

farmer must decide how to allocate their water to cropping and transfers by ranking a set of 

alternative irrigated cropping activities. Farmers may accept a transfer after choosing an activity 

that conserves water relative to the historic usage, but the joint profitability of the crop 

production and water transfer revenues must exceed that of cropping alone. Rotational fallowing 

was found to reduce risk exposure with relatively equal gross margins but had minimal water 

savings. Swapping corn for alfalfa also reduced farmer risk without diminishing profitability but 

again water savings were negligible. More profitable irrigated cropping activities had lower 

water savings. The inclusion of risk exposure was an important component to the calculation of 

breakeven water transfer values. Excluding the risk effects underestimated breakeven values by 

4-55%. These findings imply that farmers should be compensated for the water they transfer and 

the risk they take on to do so. The transfer values should therefore exceed the foregone value of 

production. 

2.4 Groundwater Background & Studies 
Across the state of Arizona, corporate farms are building expensive wells to continue 

pumping groundwater from greater depths. Lawmakers have introduced bills to expand 

groundwater regulation beyond the AMAs but have not seen any success. Many local surface 

water sources for Arizona originate in these more rural areas like the Salt River in the White 
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Mountains so protecting these resources has implications for the Phoenix AMA and others 

(Aleshire, 2021). 

The influence of the price of water on groundwater extraction is discussed by Bruno and 

Jessoe (2021). They conduct a meta-analysis of price elasticity of water demand and discuss the 

policy implications. The price elasticity of demand determines the price groundwater must be set 

at to reach sustainability goals. It is dependent on location for agricultural groundwater but 

Bruno and Jessoe report it ranges from -0.1 to 1.1. Optimal extraction depends on the rate of 

replenishment, depth to water table, and drought conditions. Overextraction of groundwater can 

lead to negative externalities for others (Bruno & Jessoe, 2021). 

Land use choices and spacing can also impact groundwater extraction. Bourque et al. 

(2016) examine the spatial placements of groundwater conservation projects across Kern County, 

California to achieve recharge or biodiversity goals while minimizing costs. Their results show 

there is overlap between the land used to achieve groundwater conservation goals and 

biodiversity habitat targets. The costs and benefits of fallowing and artificial groundwater 

recharge are considered as two possible groundwater management strategies. Costs are defined 

as the cost of water recharge (or fallowing) plus the user-assigned cost for fragmented networks. 

They assume the average cost of purchasing surface water to be equal to $650/AF based on a 

2015 survey of eighty Central Valley water districts. Bourque et al.’s target is 15% of total 

irrigation demand reallocated to groundwater basin recharge. It would be cost-effective to fallow 

11% of Kern County’s agricultural area. The effects of groundwater overdraft cost the California 

agricultural economy $247M and 1,815 jobs in 2016 (Bourque et al., 2019).  

California’s equivalent to Arizona’s GMA is the Sustainable Groundwater Management 

Act (SGMA). MacEwan et al. (2017) examine the impact that the SGMA will have on 

groundwater extraction in California by creating a model that integrates a biophysical response 

function and a hydrologic model into an economic model of groundwater use and then apply it to 

the critically overdrawn Kings and Tulare Lake subbasins of California. Economic optimization 

guides water management decisions constrained by the hydrologic system. The authors find 

sustainable yield is less than historical average pumping. An average reduction of 14% across all 

three model regions would need to be achieved to reach sustainable yield. The present value of 

SGMA regulation is estimated to be a positive benefit of $249M. The policy implications follow 
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that SGMA allows overall gains while achieving sustainability goals. However, these gains will 

not be distributed uniformly. 

In California’s Central Valley, Nelson et al. (2016) examine the linkage between surface 

water and groundwater and the potential impacts of ending long-term overdraft. The focus lies 

on economic and operational aspects including groundwater recharge, surface water pumping 

and diversions, water scarcity, and associated operating water scarcity costs. Nelson et al. (2016) 

analyze the long term effects of ending groundwater overdraft by describing an optimization 

modeling approach for the base overdraft and No Overdraft cases. They attempt to minimize the 

economic costs of water operations and shortages to estimate the minimum physically possible 

total cost of ending groundwater overdraft. Nearly all annual agricultural demands in Central 

Valley can be met when overdraft is allowed. When overdraft is restricted scarcity can increase 

costs by $50M total (Nelson et al., 2016).  

2.5 Federal Commodity Programs 
 Cotton is eligible for a variety of subsidized federal commodity and insurance programs 

which can affect the pricing structure for cotton growers. The USDA’s Risk Management 

Agency (RMA) administers the Federal Crop Insurance Program. The types of policies and crops 

eligible for coverage are decided by the RMA. Policies are available for more than 100 crops, but 

corn, cotton, soybeans, and wheat make up 2/3 of all acres enrolled (Environmental Working 

Group (EWG), 2022). Federal farm programs help agricultural producers manage the variations 

in agricultural production and profitability from year to year. There have been many iterations of 

federal commodity programs with different Farm Bills altering the eligibility and structure of 

payments and programs every few years (Evans, 2021). 

The 2014 Farm Bill made major revisions to federal commodity payments. Cotton was 

affected by the elimination of direct and countercyclical payments and became eligible for the 

subsidized supplemental insurance program, the Stacked Income Protection Plan (STAX) 

(Glauber, 2018). Cotton was ineligible for the new Price Loss Coverage and Agricultural Risk 

Coverage programs that other commodities were eligible for. Even though the cotton industry 

lobbied for STAX, participation was low. Arizona has consistently had some of the highest 

levels of enrollment in STAX. The federal government has given $2.1 billion in average subsidy 
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payments to cotton each year contributing to about 50% of the value of cotton production 

(Glauber, 2018).  

Sall and Tronstad (2021) examine the crop insurance participation rates and the planted 

acreage responses to subsidized crop insurance programs for cotton producing counties across 

the US. Cotton can be grown in a variety of conditions and is resilient against drought. Yields 

will differ based on regions so Sall and Tronstad assume that the impact of the crop insurance 

will not be equally distributed. Crop insurance changes are important to examine because they 

can affect farmers’ insurance participation and cropping decisions. In this study, Sall and 

Tronstad use county-level data from 645 cotton producing counties from 1996-2016. The authors 

simultaneously model the effects of insurance participation and acreage response at a national 

and four regional levels to reflect the simultaneous nature of the decision process for level of 

crop insurance and acreage allocated to cotton (Sall & Tronstad, 2021). Insurance participation 

was highest in the southeast (56.9%) followed by the southwest (54%), then the Delta (43.2%), 

and finally the west (37.8%). The southwest had the highest per unit subsidy rates at 5.4 cents 

per pound. A one percent increase in the prior-year rate of return leads to a 0.05% increase in 

insurance participation across the entire US. Low yield, higher risk counties (southeast and 

southwest) received higher subsidies per pound of production. Insurance participation was also 

higher in these regions. Insurance participation and planted acres have a positive and statistically 

significant relationship in the US. Across the board, Sall and Tronstad found that the elasticity of 

the percentage of cropland planted with insurance participation was negative and statistically 

significant (-0.578 in the US). They believe this suggests that cotton’s acreage response is 

inelastic to insurance participation (Sall & Tronstad, 2021).  

While Sall and Tronstad (2021) focus on the impact of commodity programs across the 

entire US, Reyes et al. (2020) study patterns and trends in crop insurance loss data for the eight 

Ogallala Aquifer states in the western High Plains region from 1989-2017. Understanding trends 

in crop insurance payments can help producers better manage their risk. Reyes et al. find crop 

insurance can be used as a proxy for agricultural impact from weather driven causes of loss 

(2020). The federal government covers 62% of producers’ insurance premiums on average 

(Reyes et al., 2020). The authors also find drought and failure of irrigation supply were two of 

the top ten causes of agricultural loss receiving insurance payouts in the Ogallala Aquifer region 
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(2020). Cotton received 29% of indemnities in the region. High risk regions identified by Reyes 

et al. (2020) include counties where groundwater is used for agricultural irrigation and drought 

contributes to 40% of indemnities. 

 Frisvold (2016) compares water use and productivity in cotton production in the western 

US using data from 1984-2013. He includes a discussion of federal commodity programs effects 

on water use. The scale effects (total production), mix effects (which crops are grown), location 

effects (where crops are grown), and intensity (water use per acre) all impact the way federal 

commodity programs affect water use (Frisvold, 2016).  

 The impact on crop profitability is also examined by King et al. (2021). The authors find 

crop insurance has made certain crops more profitable and has prompted farmers to shift to these 

more profitable crops regardless of water use requirements. Government subsidies can contribute 

significant portions of farm income. Federal payments make up 20-46% of farm-related income 

on farms 4-404 hectares (ha) and 311% of farm related income on farms 04-3.6 ha (King et al., 

2021). Larger farms are typically more profitable, but the majority still receive subsidy payments 

that contribute 15% of income (King et al., 2021). 

2.6 Land Sensing Data in Economics (CDL) 
 The Cropland Data Layer (CDL) was developed by the US Department of Agriculture 

(USDA) National Agricultural Statistics Service (NASS) to present an annual and accurate 

measure of land cover (and importantly crop cover) across the US. The CDL crop cover data 

paints a picture of the state of agriculture in a region. Since it was implemented across the 

contiguous US in 2008, economists such as Wilson et al. (2016) and Ma et al. (2021) have begun 

to include this source in their analyses of agricultural water use.  

Wilson et al. (2016) attempt to quantify future land-use related water demand in California 

under a ‘business-as-usual’ (BAU) scenario. Developed water use consumes 17.6% of CA water 

(Wilson et al., 2016). Analysis of land-use related estimates of future water demand is important 

in the creation of effective water resource management plans. Wilson et al. project land-use 

change over a 70 year period (1992-2062) in the Central California Foothills and Coastal 

Mountains and the Central California Valley. They model agricultural expansions and 

contractions, urbanization, land protection, and conversion from annual to perennial crops. The 



28 
 

USDA CDL was used to calculate average county applied water use for crops. An area-weighted 

average applied water use value was assigned to each CDL cropland class (Wilson et al., 2016). 

Wilson et al. (2016) find that between 2012-2062 under the BAU scenario, developed land cover 

is projected to increase by 62.9% with annual cropland declining a projected 30.3%. The result 

of this development would increase water demand by 1.8 billion cubic meters.  

Ma et al. (2021) attempt to use an economic value estimation model to determine the value of 

Arizona’s agricultural water use. Cropland Data Layers and meteorological data aid in their 

estimation. Previous methods for estimating the economic value of water required assumptions 

regarding crop production and labor choices and are more labor- and data-intensive. Ma et al. 

develop a framework that is more accessible across regions and easier to apply to regions 

without market price comparison data. Irrigation water’s economic value is computed based on 

the net returns of agricultural crops irrigated and agricultural water used. Relevant components 

include gross revenues, variable costs, and net returns of irrigated crops, Arizona agricultural 

water use, and the economic value of agricultural water. The authors restrict the application of 

their framework to 12 major groundwater subbasins in Arizona that contribute nearly 90% of the 

state’s major crops. Crops examined include barley, cotton, alfalfa, hay, durum wheat, and 

lettuce. The costs of production of these crops differ in each subbasin. In order to determine the 

crop types planted in the study period (2008-2016), the authors employed the use of the CDL 

from the USDA NASS. The estimated economic value of agricultural water for cotton is positive 

in the Gila Bend subbasin and negative in the East Salt River Valley, Maricopa-Stanfield, the 

West Salt River Valley, and Eloy subbasins (Ma et al., 2021). 

2.7 Panel Data and Fixed-Effects Modeling in Agriculture 
The fixed-effects framework recognizes the existence of fundamental differences 

between groups. Since it can be difficult to explicitly include all these differences within a 

model, the fixed-effects capture all time-invariant variables. In these types of regressions, the 

deviations from group-specific averages are used to measure influence on the dependent variable 

(Schlenker, 2010). Schlenker (2010) applies fixed-effects panel models to an analysis of crop 

yields and climatic responses. The benefit of such a model is its ability to overcome omitted 

variable bias by capturing all additive time-invariant influences (Schlenker, 2010). Including 

fixed-effects in the empirical modeling of irrigation districts will help control for structural 
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differences between each district. This section details the uses of fixed-effects models in the 

agricultural setting. 

Petrick and Zier (2012) use a panel dataset of 69 East German regions to test the effects 

of direct payments and rural development measures of the European Union’s Common 

Agricultural Policy on employment in agriculture. They use four different estimators to eliminate 

the fixed-effects. They are the first to use these methods in an agricultural study. Excluding 

relevant control variables can bias results for panel data. This issue comes up because some 

control variables cannot be included if they are not easily recorded or readily available. Bias 

from heterogeneity can be eliminated through the use of fixed-effects if the effects of time-

invariant characteristics can be linearly separated (Petrick & Zier, 2012). The traditional method 

of eliminating fixed-effects is to time demean the sample using the least squares dummy variable 

(LSDV) approach. The validity of this method is not confirmed with small samples, so Monte 

Carlo studies of small samples were used to build the “corrected LSDV” which outperforms 

other models in terms of bias and efficiency (Petrick & Zier, 2012). This method is preferred by 

Petrick and Zier. Another estimator developed by Blundell and Bond (1998) was found to be 

more efficient if lagged differences were included as instruments into a level equation of the 

dependent variable (Petrick & Zier, 2012).  

Weather and climate changes can be expected to directly impact agriculture since weather 

is a direct input into the production function (Auffhammer & Schlenker, 2014). Sources of 

variation in econometric studies may stem from time-series variation, cross-sectional variation, 

or a combination of the two in a panel setting. Each of these three sources of variation have been 

used to link agricultural outcomes to weather. Auffhammer and Schlenker note that econometric 

studies often exclude control variables for all relevant dimensions of climate. If there is not a 

stationary relationship between the included and omitted variables, there will be prediction 

errors. The included variable would also capture some of the variation from the omitted 

variables. This challenge from panel data can be addressed through location fixed-effects to 

capture all time-invariant confounding factors (Auffhammer & Schlenker, 2014).  

The impact of climate on agriculture is also analyzed by Blanc and Schlenker (2017) 

using panel models. The value of panel models in climate studies stems from their ability to 

account for locational climate differences across space and in variables such as soil quality that 
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may also be correlated with climate (Blanc & Schlenker, 2017). The locational fixed-effects 

capture any time-invariant differences between groups and ensures that the deviations from the 

mean are not correlated with baseline spatial differences. Unobserved variables in a panel 

regression are controlled through the fixed-effects. Fixed-effects panel models cannot include 

variables that do not change with time because they are being captured through the fixed-effects. 

Group fixed-effects (for irrigation districts in the case of this work) capture variation from 

unobserved factors that are constant within each group over time. Including these fixed-effects is 

equivalent to a joint demeaning of the dependent and independent variables. Demeaning 

transforms a variable such as weather into shocks (deviations from the average). Independent 

variables are then random and exogenous solving the biased coefficient problem.  

A benefit of the demeaning approach is the retention of more degrees of freedom in the 

statistical analyses. This is important for interpreting weather variables that are often highly 

correlated such as temperature and precipitation. More degrees of freedom are also helpful in 

estimating nonlinear climatic effects (Blanc & Schlenker, 2017). When the degrees of freedom 

are higher there is greater power to reject a false null hypothesis and find significant results (UT 

Austin, n.d.). 

2.8 Contributions 
 The literature summarized in this chapter guided the research and modeling of this thesis. 

With the solid foundation of the literature examined above, this thesis work adds to the existing 

literature on Arizona crop mix and agricultural water delivery decisions. Of the literature 

discussed in this chapter, McGreal and Colby’s analysis of water deliveries and irrigation 

intensity is most closely concerned with the focus of this work. Griffin (2005) presents a model 

for efficient water use by a single firm. This work provides the basis for the theoretical model of 

irrigation district water deliveries presented in Chapter 3 of this thesis. Griffin discusses how the 

prices of crops, water, and other inputs will affect the profitability of a farmer within an 

irrigation district and influence their production decisions.  The analysis in the following 

chapters will cover three Arizona Active Management Areas including the Tucson AMA and the 

corresponding Cortaro-Marana Irrigation District. The effects of federal crop subsidies and 

insurance in economic literature have not been widely discussed so the inclusion of the novel 

federal cotton payment per acre variable may help guide further analyses of water and crop 
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decisions. The Tucson AMA and federal cotton commodity payments were not considered by 

McGreal and Colby (2022). Climatic factors are known to influence water and crop choices by 

farmers. This work attempts to measure the individual impacts of both precipitation and 

temperature. Later chapters will also discuss the multiple approaches taken to account for 

irrigation district fixed-effects in models of crop mix and agricultural water deliveries. 

  



32 
 

Chapter 3: Theoretical Background for This Study 
The conceptual modeling of this study begins with an examination of an individual 

agricultural water user’s decision making process in order to maximize profits. Even though the 

empirical analysis presented in Chapter 5 focuses exclusively on irrigation district level 

decisions, the total water demand of each district is comprised of the sum of individual growers’ 

demand. Therefore, one must understand the profit-maximizing decisions of agricultural growers 

first. Griffin (2005) provides a basic model of the profit-maximizing agricultural water user that 

is applied to farmers within an irrigation district for this study.  

3.1 Profit-Maximization Model 
 Farmers in central Arizona can be modeled as striving for profit-maximization. A central 

Arizona farmer represents the agent in this model and produces an output of a single crop (alfalfa 

or cotton may be chosen as the model output), represented by Y in this model, dependent on their 

water delivery decisions and other production inputs. Water deliveries is denoted by W. Other 

inputs relevant to production could include labor, fertilizer, or energy costs and could be 

captured in a vector of agricultural inputs. However, to simplify the theoretical analyses, this 

model includes only one other choice input denoted by X. Climate variables can also be expected 

to influence agricultural output, but this is an exogenous factor outside of growers’ control 

(Moore et al., 1994). As such, they are not considered in this theoretical model. Farmers can be 

expected to adapt to climatic variables which are later examined in the empirical models to 

follow in Chapter 5. 

 The farmer’s production function for crop output Y is represented by the combination of 

the two inputs, W and X, such that 𝑌𝑌 = 𝑓𝑓(𝑊𝑊,𝑋𝑋). A degree of substitutability between W and X 

exists for the farmer so they may choose varying amounts of each input in order to obtain output 

Y. For example, some growers may choose to use deficit irrigation of a certain crop such as 

alfalfa to remain in production at lower quantities while conserving water. The profit-

maximizing farmer attempts to select the optimal levels of W and X with respect to profit. 

 The profit maximizing firm’s production function must meet certain conditions. The first 

condition is that there must exist a positive marginal product defined by the first derivative of the 

production function ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑊𝑊

) up to a point of water usage denoted �⃖�𝑤��. Additional water usage beyond 
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this point would reduce production while raising water costs. A positive second derivative, 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑊𝑊2 

indicates increasing return to scale until point 𝑤𝑤��⃗   (occurs before point �⃖�𝑤��) where decreasing 

returns to scale begin to occur when 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑊𝑊2 < 0.  

 The farmer’s profit, (π) can be simply defined as the total value of output (TVP) less total 

operating costs (TC).  

𝜋𝜋 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 (1) 

This framework can be expanded upon with certain assumptions to define and solve the farmer’s 

profit-maximization problem. The farmer can be assumed to be a price taker within the market, 

meaning they are small enough that they do not have any influence over the price they receive 

for crop Y. The price farmers receive for crop Y is defined as pY dollars per unit. Similarly, the 

cost of input X is defined as pX dollars per unit. The cost of water to the farmer is represented by 

the function c(W). Farmers could face different cost function structures for their water. For 

example, a farmer might have access to a low cost water source only up to a limited quantity 

where they must then move up a tier to a higher costing water source. If, however, the cost of 

water is assumed constant the farmer would face a price of water, pW, and the cost function 

would be defined as 𝑐𝑐(𝑊𝑊) =  𝑝𝑝𝑊𝑊 ∙ 𝑊𝑊. The first derivative is of the cost function is assumed to be 

positive ( 𝑑𝑑𝑐𝑐
𝑑𝑑𝑊𝑊

> 0 ) meaning more water costs more.  

 Taking these assumptions into consideration, the TVP and the TC can be defined as: 

𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑝𝑝𝑌𝑌 ∙ 𝑓𝑓(𝑊𝑊,𝑋𝑋)  (2) 

𝑇𝑇𝑇𝑇 =  𝑐𝑐(𝑊𝑊) +  𝑝𝑝𝑋𝑋 ∙ 𝑋𝑋  (3) 

Substituting equations (2) and (3) into equation (1) gives the following profit function. 

𝜋𝜋 =  𝑝𝑝𝑌𝑌 ∙ 𝑓𝑓(𝑊𝑊,𝑋𝑋) − 𝑐𝑐(𝑊𝑊) −  𝑝𝑝𝑋𝑋 ∙ 𝑋𝑋  (4) 

A farmer maximizes equation (4) by selecting optimal quantities of W and X. 

max𝜋𝜋
𝑊𝑊,𝑋𝑋

= 𝑝𝑝𝑌𝑌 ∙ 𝑓𝑓(𝑊𝑊,𝑋𝑋) − 𝑐𝑐(𝑊𝑊) −  𝑝𝑝𝑋𝑋 ∙ 𝑋𝑋  (5) 
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This is done by taking the partial derivatives of the profit function with respect to W and X to 

find the first order necessary conditions.  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑊𝑊

= 𝜕𝜕[𝑝𝑝𝑌𝑌∙𝜕𝜕(𝑊𝑊,𝑋𝑋)−𝑐𝑐(𝑊𝑊)− 𝑝𝑝𝑋𝑋∙𝑋𝑋]
𝜕𝜕𝑊𝑊

   (6) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋

= 𝜕𝜕[𝑝𝑝𝑌𝑌∙𝜕𝜕(𝑊𝑊,𝑋𝑋)−𝑐𝑐(𝑊𝑊)− 𝑝𝑝𝑋𝑋∙𝑋𝑋]
𝜕𝜕𝑋𝑋

   (7) 

 Equations (6) and (7) are then set equal to zero to determine the optimal levels of inputs. 

Because of the previous assumptions made about the production function, the profit function 

extrema found through this optimization problem can be assumed to be a maximum. The fixed 

optimal quantities of W and X are now defined as W* and X*. Considering these optimal levels of 

inputs in the derivatives in equations (6) and (7) yields: 

𝑝𝑝𝑌𝑌 ∙ 𝑓𝑓𝑊𝑊 − 𝑐𝑐′(𝑊𝑊∗) = 0   (8) 

𝑝𝑝𝑌𝑌 ∙ 𝑓𝑓𝑋𝑋 − 𝑝𝑝𝑋𝑋 = 0   (9) 

Because the output price is included in both equations (8) and (9) they can be rearranged so that 

the output price is alone on the left hand side of each and then set equal to each other. 

𝑝𝑝𝑌𝑌 = 𝑐𝑐′(𝑊𝑊∗)
𝜕𝜕𝑊𝑊

   (10) 

𝑝𝑝𝑌𝑌 = 𝑝𝑝𝑋𝑋
𝜕𝜕𝑋𝑋

   (11) 

𝑐𝑐′(𝑊𝑊∗)
𝜕𝜕𝑊𝑊

= 𝑝𝑝𝑋𝑋
𝜕𝜕𝑋𝑋

   (12) 

The above equations represent the equality between the ratio of marginal cost to marginal 

productivity of each input and the output price. This occurs only under profit maximizing 

conditions. Equation (12) can be rearranged to find the rate of technical substitution which will 

be equal to the ratio of the marginal prices of the two inputs. 

𝜕𝜕𝑋𝑋
𝜕𝜕𝑊𝑊

= 𝑝𝑝𝑋𝑋
𝑐𝑐′(𝑊𝑊∗)   (13) 

The cost of input X, pX, is a fixed value, and if the cost of water was also fixed at pW, then the 

ratio of the marginal input prices would be the ratio of the input prices 𝑝𝑝𝑋𝑋
𝑝𝑝𝑊𝑊

. 
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Equation 8 can be rearranged such that output price multiplied by the marginal product of 

water is equal to the marginal cost of water: 

𝑝𝑝𝑌𝑌 ∙ 𝑓𝑓𝑊𝑊 = 𝑐𝑐′(𝑊𝑊∗)   

This reflects that under optimal profit-maximizing choices, the marginal value product of water 

is equal to the marginal cost of water. This type of relationship can be assumed to exist for all 

choice inputs. 

𝑀𝑀𝑇𝑇𝑇𝑇𝑊𝑊 = 𝑀𝑀𝑇𝑇𝑊𝑊   (14) 

This section developed the grower’s crop production and profit functions with a focus on 

a conceptual model of profit maximization for a single output, multiple inputs case, with a focus 

on the irrigation water input. The next section examines the drivers of irrigation water demand 

based mainly on crop mix decisions such as which crops to plants and how many acres to 

allocate to each crop. 

3.2 Drivers of Irrigation District Water Demand 
 The demand for irrigation water is a derived demand, based on the net returns from 

agricultural products produced (Scheierling et al., 2006). This section develops a conceptual 

model of water demand by identifying and describing the main drivers of irrigation water 

demand as informed by the literature, drawing on Schoengold, Sunding, and Moreno (2006).  

 Schoengold et al. (2006) use a panel dataset of individual land sections to derive an 

agricultural water demand function.  They define water use at a particular location at a given 

point in time as a function of water price, time dependent variables, land quality variables, and 

predicted land allocation. With a clearly defined crop production function, one may derive the 

water demand function through the value of the marginal product of water (Schoengold et al., 

2006). This framework guides the development of the conceptual models for water demand in 

this thesis, which focuses on irrigation district level water demand, modeled as the sum of 

member growers’ demand. 

3.2.1 Time Dependent Variables 

 Some drivers of water demand change over time but not across irrigation districts. Input 

prices are one such variable. The irrigation districts in central Arizona all face the same CAP 
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water price, which does change year to year. Besides surface water, farmers may also pump 

groundwater. The costs for using groundwater can be reflected in energy costs used to pump 

groundwater. Electricity costs are highly subsidized, with prices locked in under lengthy 

contracts in central Arizona irrigation districts, but fuel prices can act as a proxy for other on 

farm energy costs as a time-variant driver of water demand. This is discussed further in Chapter 

4. 

3.2.2 Spatial Characteristics 

 Growers across central Arizona are also subject to drivers of water demand that vary over 

location and sometimes over time as well. These spatial characteristics variables are especially 

significant because of the diversity of irrigation districts within this study. Even within an AMA, 

irrigation districts may experience differences in spatial characteristics affecting which types of 

crops may be grown, which irrigation systems can be used, and the relative profitability of each 

crop and irrigation system (Schoengold et al., 2006). This is evident in different crop mixes 

between the three AMAs. Alfalfa is the dominant crop in the Phoenix and Tucson AMA 

irrigation districts, but in the Pinal AMA, cotton and alfalfa are more evenly planted. The 

locational characteristics that are time invariant are captured in irrigation district fixed-effects 

explained further in Chapter 6.  

 Environmental variables that change over time and location can be used to reflect soil and 

topography characteristics that impact crop mix and irrigation choices. In this study, average 

county temperature and average county precipitation are used to reflect differences between 

irrigation districts.  

3.2.3 Predicted Land Allocation Among Crops 

 Land allocation refers to crop cover (crop mix) choices made by farmers within an 

irrigation district. Crop cover is a function of its own that impacts water demand decisions. Acres 

planted of crop C in irrigation district i at time t is represented by Acit. The decision of how much 

of a crop to plant is influenced by the prices of all crops and federal commodity payments 

(vector P), expected climate and weather conditions (temp and precip), cost of water (pW), cost of 

other on farm energy (proxied by diesel prices, pE) and unique irrigation district characteristics 

(vector D).   

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝑷𝑷𝑐𝑐, 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑝𝑝𝑊𝑊𝑐𝑐,𝑝𝑝𝐸𝐸𝑐𝑐𝑐𝑐,𝑫𝑫𝑐𝑐𝑐𝑐)  (15) 
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3.3 Irrigation Water Demand Model 
 With the drivers of the derived demand for irrigation water examined, a conceptual model 

of water demand may be defined. Water demand (measured in acre-feet) in irrigation district i 

and time t, represented by Wit, is established as a function of the above time dependent variables 

(TD), spatial characteristics (SC), and predicted land allocation (A). The final form is shown in 

equation (20). 

𝑊𝑊𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝑇𝑇𝑇𝑇𝑐𝑐, 𝑆𝑆𝑇𝑇𝑐𝑐𝑐𝑐,𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑓𝑓(𝑷𝑷𝑐𝑐, 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑝𝑝𝑊𝑊𝑐𝑐,𝑝𝑝𝐸𝐸𝑐𝑐𝑐𝑐,𝑫𝑫𝑐𝑐𝑐𝑐)  (16) 

This model includes all the common drivers of water demand included in recent agricultural 

economics literature on irrigation water demand. The conceptual work presented in this chapter 

guides the econometric analysis presented in Chapter 5. 
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Chapter 4: Data 
 The data included in this thesis are obtained from a variety of sources to construct the 

final panel dataset used in the empirical analysis presented in Chapter 5. There are fourteen 

irrigation districts included in the study across three Active Management Areas (AMAs) 

(Phoenix, Pinal, and Tucson). The time frame of this study is from 2008-2020. Because the 

Cropland Data Layer (CDL) for Arizona only goes back to 2008, that year must act as the lower 

boundary. The upper boundary, 2020, is the latest year in which there are available data for all 

economic and climatic variables. Contributions to the literature on crop mix and water delivery 

predictions stem from the inclusion of variables representing federal commodity payments for 

cotton and specific climatic variables (temperature and precipitation). The data used represent a 

mix of state, county, and irrigation level data. The final panel dataset is composed of 182 

observations. This chapter will detail the sources of data, collection and cleaning procedures, and 

major trends including the significant variables chosen for the final empirical models.  

4.1 Water Use Variables 
Because all the irrigation districts in this study are located within the regulatory 

boundaries of AMAs, they are required to submit annual water usage reports to the Arizona 

Department of Water Resources (ADWR). These reports are available on the AWDR’s Online 

Data Repository. From these annual reports, one can obtain the data on irrigation water deliveries 

to each district and the sources of water (groundwater, surface water, CAP water, in-lieu water1). 

The data obtained through the ADWR reports serve as the dependent variable for the 

agricultural water deliveries model. Water deliveries can vary drastically between irrigation 

districts and years. For example, as Table 1 indicates, the smallest annual water delivery 

occurred in the San Tan Irrigation District (STID) in 2016 with only 267 AF delivered. While the 

biggest agricultural delivery of 338,502 AF (Central Arizona Irrigation and Drainage District 

(CAIDD) in 2011) is 3 orders of magnitude greater. The average trends across AMAs in water 

deliveries to agriculture can be observed in Figure 1. Irrigation district-specific agricultural 

deliveries are shown in Figure 2-4. The CAIDD and Maricopa-Stanfield Irrigation and Drainage 

District (MSIDD) deliveries are consistently more than 100,000 AF greater than other district 

 
1 In-lieu water is renewable water delivered to a recipient who holds a groundwater right but agrees to replace 
pumping with the in lieu water. This creates groundwater savings (ADWR, 2022). 



39 
 

deliveries. The fixed-effects strategy employed in Chapters 5 and 6 helps combat this issue of 

different annual water deliveries between districts. Total water deliveries across all fourteen 

irrigation districts have been on the decline (Figure 1). 

 A strong correlation (0.966) exists between agricultural water deliveries and planted area 

across the entire study. The correlation between water deliveries and planted area in individual 

irrigation districts is weaker (Table 2). The effects of this correlation can be seen in the results of 

the agricultural water deliveries models. Variables representing crop acres have extremely strong 

explanatory power. 

4.2 Land Cover Measure 

The USDA NASS publishes the Cropland Data Layer (CDL) each year. The CDL uses 

remote sensing to report land cover across the contiguous United States. The resolution is 900m2 

pixels and there are approximately 4.5 pixels within an acre. To make interpretation more 

meaningful, these pixels are converted to acres. Crop cover is the main purpose of the CDL, but 

it also measures other land cover types including developed area, fallowed, lands, open water, 

grassland, forest, and other non-cropped land covered. The CDL captures land cover images 

daily in order to obtain a usable image once every two weeks throughout the growing season. Its 

main focus is large area summer crops, but it can also capture crops grown in rotation by 

verifying with Farm Service Agency farmer reports. If the CDL does determine a field is planted 

in rotation, it will be categorized into a double crop grouping. Cotton and alfalfa acres are 

reported with over 90% accuracy in Arizona (USDA NASS, 2022). 

Irrigation district shapefiles from ADWR can be integrated with CDL raster data to 

obtain measures of crop cover within an irrigation district. This process is completed for each 

irrigation district for each year within the study period. Tables 3 and 4 report the average size 

and crop cover for each irrigation district. The crop variables are grouped according to their CDL 

category and can be seen in detail in Table 5. Because cotton and alfalfa are so vital to central 

Arizona agriculture, these crops are examined alone. Figures 5-7 show the proportion of acres 

planted with alfalfa by county separated into three groups based on average proportion to allow 

for better observation of trends. The share of cotton acres by irrigation district is reflected in 

Figures 8-10. The average trends across all fourteen irrigation districts for alfalfa, cotton, and 
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grains (corn, sorghum, barley, durum wheat, winter wheat) are reflected in Figure 11. Alfalfa has 

the highest percentage of planted acres followed by the grain category. 

4.3 Economic and Climatic Variables  
The USDA NASS reports annual survey data on crop yields and prices at the county and 

state level. This resource provides the alfalfa, cotton, and wheat yields for the three counties in 

the study region (Maricopa, Pima, and Pinal). Alfalfa yields are reported in tons per acre, cotton 

yields are reported in pounds per acre, and wheat yields are reported in bushels per acre. All 

winter wheat yield and price data needed for this study are reported at the state level. Certain 

year observations for yield are unavailable for winter wheat, alfalfa, and cotton. The USDA 

stopped reporting county-level yields for alfalfa in 2018 but has continued to report state level 

yields. Pima county is also missing observations for alfalfa and cotton in other years. The 

procedure to fill missing crop yield observations is addressed in Appendix A.1 and Table A1. 

Figures 12 & 13 show the annual trends in alfalfa and cotton yields for each of the three counties 

examined. Figure 14 shows the state level annual winter wheat yield trends. 

State level crop prices received are also reported through the USDA NASS for alfalfa, 

cotton, and winter wheat. The USDA NASS may withhold data when the privacy of individual 

operations may be inferred because they might have been one of a few or the only producer in 

the county that year. When this occurs and the annual value is not available as is the case of 

upland cotton in 2015 and 2016, this is corrected by averaging the existing monthly prices 

received for that year. To allow for comparison across years and to account for inflation all 

monetary variables are adjusted using the Consumer Price Index (CPI) from the US Bureau of 

Labor Statistics. Real prices are generated using 2020 as the base year and will thus be referred 

to as 2020$. The real Arizona alfalfa prices are reported in 2020$ per ton in Figure 15. The 

average price is just over $200 per ton. The winter wheat price is reported in dollars per bushel in 

Figure 16. The average price fluctuates around $5.25 per bushel. 

Because cotton is eligible for many different federal commodity payments, the price 

received reported by the USDA NASS is not an accurate estimate for the price farmers can 

expect to receive. A good proxy for price is the Expected December Futures price for cotton. The 

Futures price on the last Friday in February is used since this is about the time when farmers 

must finalize their cropping decisions for the season. The source for transcription of the 
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December Futures price is futures.tradingcharts.com from 2008-2020. These prices are reported 

in cents per pound but are converted to dollars per pound in this study and can be observed in 

Figure 17. Cotton Futures reach a peak of $1.40 per pound in 2011 but prices have been on the 

decline since then.  

The USDA NASS annual crop yields and annual prices (USDA NASS for alfalfa and 

winter wheat and December Futures for cotton) are multiplied for each crop and county in each 

year in the study period to create a gross revenue variable. The county gross revenue for alfalfa is 

shown in Figure 18. Because cotton and winter wheat are often grown in rotation, the gross 

revenues of these two crops are added for each year to get a measure of gross revenue for cotton 

plus winter wheat. Figure 19 shows the combined cotton and wheat county gross revenue. Even 

though the price variables included within this study only vary by year, the gross revenues of 

cotton and alfalfa will vary between irrigation districts due to differences in county yield. For the 

most part, the gross revenue of alfalfa closely tracks the same trends and dollars per acre values 

as the gross revenue of cotton plus wheat. This is apparent in Figure 20 which shows the annual 

average gross revenue across all three counties of alfalfa compared to that of cotton plus wheat. 

Gross revenue measures are included instead of simply prices because they introduce more 

variability with the crop yield measures. Additionally, the price of alfalfa has been found to be 

insignificant in explaining variation in water deliveries in the literature (McGreal, 2021).  

The Bureau of Reclamation administers the Central Arizona Project (CAP) which 

provides low cost Colorado River water to central Arizona water users. These CAP prices are 

much easier to obtain and interpret than cotton prices. Annual fee schedules are published by 

CAP each year that include fees for the current year and future fee projections. Prices are set to 

cover delivery costs and the repayments costs for the federal loan to complete the CAP (CAP, 

2022). Farmers are aware of the CAP water price they will face years in advance. These fees are 

at the state level and reported as dollars per acre-foot of water delivered and are adjusted to 

2020$ before inclusion in this study. The real CAP prices are reflected in Figure 21. The average 

price is $64 per AF. CAP prices were steadily increasing until they leveled out in 2015 at a peak 

$82 per AF. Since 2017, prices have been on the decline. 

 Energy (specifically electricity) costs also play a role in crop mix and production 

decisions. Power is needed to pump groundwater from wells. Even though energy is an important 
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input in agricultural crop production, the irrigation districts in this thesis have contracts with the 

Arizona Power Authority (APA). APA provides highly subsidized electricity through the 

Western Area Power Administration to these irrigation districts. Rates for agricultural uses can 

be as low as $0.06 per kilowatt hour (McGreal & Colby, 2022). Since farmers are not bearing the 

full cost of power and do not expect price changes year to year, another measure that can 

represent energy costs must be used. US diesel prices can act as a proxy for other on farm energy 

costs in agricultural production (Scheitrum, 2022). The US Energy Information Administration 

(EIA) releases annual diesel prices for five districts across the US. Arizona is located within the 

West Coast region (Petroleum Administration for Defense District (PADD) 5). The final variable 

uses the PADD5 No 2 Diesel Retail Prices for 2008-2020 in dollars per gallon adjusted to 2020$. 

Diesel prices fluctuate frequently between $2-4 per gallon as can be seen in Figure 22.  

This study examines the effect of climatic variables separately instead of using a drought 

indicator index to reflect climate behavior. The West Wide Drought Tracker (WWDT) which 

uses climate data from PRISM and the National Weather Service Cooperative Observer Network 

reports the temperature and precipitation measures that act as the climatic variables in this study. 

Annual values for each county are calculated by averaging monthly values reported by WWDT. 

Temperature is reported in Fahrenheit and precipitation is reported in inches. Both current year 

and a one-year lagged temperature and precipitation variables are explored in the course of 

defining the final empirical models of crop mix and water deliveries. Using temperature and 

precipitation instead of a climate index allows interpretation of the specific effects from these 

climatic variables separately. Precipitation may affect crop mix and water delivery decisions 

because of its relationship with soil moisture. As precipitation increases, so does soil moisture 

which is an important condition for plant growth (Sehler et al., 2019; Earth Observing System, 

2019). Figure 23 shows the average annual county temperature across the study period and 

Figure 24 shows the average annual precipitation. Weather trends are similar between the three 

counties of interest. Maricopa has a slightly higher average temperature which may be a result of 

the urban heat island effect.  

4.4 Federal Commodity Payments Measure 
The Environmental Working Group (EWG) obtains county level crop insurance 

information from the USDA Risk Management Agency through the Freedom of Information Act. 
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Their Farm Subsidy Database categorizes payment data by a variety of levels including state, 

county, category, program, crop insurance, commodity payment, top recipients, etc. Annual 

county data for all federal cotton payments from 2008-2019 are collected. Payment programs are 

irregular across the years because federal farm bills change the structure of payment programs 

every five years or so. Some payment categories are so irregular they are excluded from this 

study when calculating the total payments to cotton for each county. The Other Payments 

category is not included because payments are made to this category sporadically and it is not 

clear which programs fall into this miscellaneous category. Counter-cyclical payments are also 

excluded from the total payments. EWG only reports payments within this program category 

from 2002-2010. From 2008-2009, the counter-cyclical payments to Maricopa and Pinal 

Counties were much larger than any other payment category. These payments were not tied to 

planted cotton acres and are not likely to influence cropping decisions (Tronstad, 2022). The 

counter-cyclical program was also the cause of a trade dispute against the United States brought 

to the World Trade Organization (WTO) by Brazil in the 2000s. Brazil argued that US 

agricultural federal farm programs gave US producers an unfair advantage and were inconsistent 

with the US’s WTO commitments (Office of the US Trade Representative, 2014). Counter-

cyclical payments were ended as a result of this dispute (Tronstad, 2022). Because of these 

reasons, counter-cyclical payments are left out of this study. Since the events of Brazil’s case 

against US federal cotton programs, a shift has occurred to creating payment programs for 

cottonseed which result in payments to farmers similar to those before the WTO dispute (Sall & 

Tronstad, 2021). 

Federal cotton payments may not be directly tied to acres planted and therefore would not 

directly influence the year to year planting decisions. However, farmers are paid according to 

their base acres which is sporadically adjusted. Because farmers do not know in which years, 

their cotton base will be readjusted, they are incentivized to maintain their cotton acreage to 

insure they will continue to receive payments should the base be readjusted (Tronstad, 2022).  

At the time of this empirical analysis, EWG has not yet published 2020 federal cotton 

payments and put a pause on fulfilling data sharing requests (Leary, 2022). The procedure for 

estimating 2020 payments is detailed in Appendix A.1. Figure 25 shows the total real federal 

cotton commodity payments (without exclusion of categories) by county for all programs. 
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Following a peak in payments in 2009, total federal subsidies for cotton take a steady decline. 

Pima county payments are far smaller than those paid to Maricopa and Pinal. The three do not 

start to merge until the last few years. Even though Pinal County has more cropland than 

Maricopa County, the payments for these two counties closely mirror each other.  

A per acre cotton commodity measure for each county is explored as the choice variable 

form. This variable is calculated by summing the annual irrigation district cotton acres by 

county. Then the total real federal payments to cotton are divided by the total county cotton acres 

for each of the three counties included in this study. This helps control for some of the variation 

in payments that would occur with fluctuations in cotton acreage. Payments per acre trends are 

displayed in Figure 26. From 2008-2013, Maricopa payments per acre are significantly higher 

than either Pima or Pinal. Pima County does not receive any payments from 2017-2019.  

4.5 Choice Variables 
 Not all the variables covered in this chapter are selected for the final empirical models 

used to predict crop cover and agricultural water deliveries. Appendices A.2 and A.3 explore the 

alternative models considered. Of the climatic variables explored, average county precipitation 

lagged by one year is significant in explaining variation in crop mix decisions. Current year 

temperature and precipitation are both included in water delivery models and significant under 

certain conditions. Instead of including crop prices, this study uses the gross revenue of alfalfa 

and the gross revenue of cotton plus wheat. The gross revenue measures combine the variability 

from state level crop prices and county level crop yields. Federal payments for cotton are 

significant when predicting alfalfa acres. The price of CAP water ultimately does not have an 

influence in predicting grower water deliveries. Chapter 5 discusses the empirical models 

estimated in more detail and Chapter 6 explains the implications of the results. 
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Chapter 5: Empirical Models 
 The data discussed in Chapter 4 are included in statistical analyses informed by the 

conceptual model developed in Chapter 3. Initial rounds of statistical analyses employ Ordinary 

Least Squares (OLS) regressions. This chapter describes the preliminary independent variables 

tested for statistical significance to determine which are meaningful in predicting percent alfalfa 

acreage and agricultural water deliveries. Potential alternative functional forms for the percent 

alfalfa model with a limited dependent variable and their strengths and weaknesses are described. 

Robustness checks are conducted on the OLS regressions and find the variances of error terms 

from these regressions may be heteroskedastic. The consequences and corrections to 

heteroskedasticity are discussed.  

5.1 Empirical OLS Regressions 
 The percentage of alfalfa is the dependent variable in the crop mix model for multiple 

reasons even though there may be some potential drawbacks. Firstly, alfalfa is one of the most 

prominent crops in the study region averaging 53% of planted acreage. It is also a crop that is in 

the ground year round. Alternative crops such as cotton are planted seasonally in rotation with 

another crop such as winter wheat. Potential measurement errors in the Cropland Data Layer 

(CDL) from the seasonal nature of cotton is a concern. The CDL categorizes cotton as a singular 

crop, and within double-cropping categories in rotation with other crops. Alfalfa on the other 

hand is in the ground all year lending confidence to the CDL acreage measures for this crop. 

Because alfalfa is the only crop grown in a field in a year, one does not need to consider the 

implications from additional crops grown in a rotation. One of the weaknesses of using alfalfa 

acres as the dependent variable in the crop mix model is the life of the plant. A stand of alfalfa 

may be productive for 5-7 years so planting decisions do not occur annually. Instead, it can be 

expected that only 15-20% of the total alfalfa acres in a given year is considered for changes in 

crop cover. Crop mix is estimated using OLS, but the dependent variable is different because it is 

constructed by dividing alfalfa acres in an irrigation district by the total planted acres in the same 

district in a given year. This gives a dependent variable that is a proportion, continuous between 

zero and one as represented in equation (17). The implications of a proportional dependent 

variable are discussed further in section 5.3 of this chapter. 
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𝑎𝑎𝑎𝑎𝜕𝜕𝑎𝑎𝑎𝑎𝜕𝜕𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑐𝑐𝑎𝑎𝑑𝑑 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

= 𝑝𝑝𝑡𝑡𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇𝐴𝐴𝑐𝑐𝑐𝑐  (17) 

The definition of the crop mix dependent variable allows for the specification of the model for 

percent alfalfa acreage. Here, the share of alfalfa acreage in irrigation district i in year t is 

predicted dependent on climatic and economic variables. 

𝑇𝑇𝑇𝑇𝐴𝐴𝑐𝑐𝑐𝑐 =  𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽1𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐−1 + 𝛽𝛽2𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐−1 + 𝛽𝛽3𝐹𝐹𝑡𝑡𝑝𝑝𝑇𝑇𝐹𝐹𝑡𝑡𝑡𝑡𝐹𝐹𝑝𝑝𝑇𝑇𝑝𝑝𝐹𝐹𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝐹𝐹𝑎𝑎𝑐𝑐 +

𝛽𝛽4𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺𝐴𝐴𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑎𝑎𝑐𝑐−1 + 𝛽𝛽5𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺(𝑇𝑇𝐹𝐹𝑡𝑡𝑡𝑡𝐹𝐹𝑝𝑝 + 𝑊𝑊ℎ𝑡𝑡𝑝𝑝𝑡𝑡)𝑎𝑎𝑐𝑐−1 + 𝑡𝑡𝑐𝑐𝑐𝑐   (18) 

Included in this model of alfalfa acreage are lagged climatic variables for county a, temperature 

(temp) and precipitation (precip). The federal cotton commodity payments variable 

(FedCottonPayments) is estimated with current year payments. Current year payments are used 

for federal commodity payments because while they do impact cotton planting decisions, the 

effect is more of an indirect effect. Year to year cotton acres planted do not typically affect 

annual payments, but farmers want to plant cotton to keep their acreage up in case the base acres 

eligibility is reset that year. Finally, the gross revenues of alfalfa (GrossRevAlfalfa) and of cotton 

plus wheat (GrossRev(Cotton+Wheat)) are included and also lagged. The independent variables’ 

explanatory power and significance in this preliminary OLS model are discussed in the next 

section. 

Recall the conceptual model of water demand represented in equation (16) derived in 

Chapter 3.  

𝑊𝑊𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝑇𝑇𝑇𝑇𝑐𝑐, 𝑆𝑆𝑇𝑇𝑐𝑐𝑐𝑐,𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑓𝑓(𝑷𝑷𝑐𝑐, 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑝𝑝𝑊𝑊𝑐𝑐,𝑝𝑝𝐸𝐸𝑐𝑐𝑐𝑐,𝑫𝑫𝑐𝑐𝑐𝑐)  (16) 

 This conceptual model guides the empirical modeling of agricultural water deliveries in 

this section. Irrigation district agricultural water deliveries (AWD) measured in AF in irrigation 

district i in year t are also estimated using OLS.  

𝐴𝐴𝑊𝑊𝑇𝑇𝑐𝑐𝑐𝑐 =  𝛼𝛼𝐷𝐷 + 𝛿𝛿1𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐 + 𝛿𝛿2𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐 + 𝛿𝛿3𝑇𝑇𝐴𝐴𝑇𝑇𝑐𝑐 + 𝛿𝛿4𝑝𝑝𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡𝑝𝑝𝑐𝑐 + 𝛿𝛿5𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺𝐴𝐴𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑎𝑎𝑐𝑐 +

𝛿𝛿6𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺(𝑇𝑇𝐹𝐹𝑡𝑡𝑡𝑡𝐹𝐹𝑝𝑝 + 𝑊𝑊ℎ𝑡𝑡𝑝𝑝𝑡𝑡)𝑎𝑎𝑐𝑐 + 𝛿𝛿7𝐴𝐴𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝐴𝐴𝑐𝑐𝑝𝑝𝑡𝑡𝐹𝐹𝑐𝑐𝑐𝑐 + 𝛿𝛿8𝑇𝑇𝐹𝐹𝑡𝑡𝑡𝑡𝐹𝐹𝑝𝑝𝐴𝐴𝑐𝑐𝑝𝑝𝑡𝑡𝐹𝐹𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑐𝑐𝑐𝑐    (19) 

The water deliveries model includes explanatory variables that are not included in the crop mix 

model. These variables are CAP water prices (CAP), the cost of diesel (diesel), and measures of 

crop cover within an irrigation district (AlfalfaAcres and CottonAcres). 
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5.2 Significant OLS Independent Variables 
 The life cycle and rotational timeline for alfalfa crops may dampen the effects of any of 

the explanatory variables in the regressions run. Even with this consideration, the percentage 

alfalfa models perform generally well. Preliminary models with cotton acreage as the dependent 

variable have lower explanatory power within districts and fewer statistically significant 

independent variables compared to the percentage alfalfa models. The signs on significant 

estimated coefficients do not align with economic theory at times (Tables A4, Appendix A3).  

 The prices of crops are expected to influence cropping choices because of their effect on 

profitability. This assumption does not hold in the case of alfalfa prices. In multiple preliminary 

model specifications, the price of alfalfa is not statistically significant in explaining variation in 

alfalfa acreage. This result is also present in McGreal and Colby’s (2022) estimation of central 

Arizona agricultural water deliveries and irrigation intensity. The multi-year life-cycle of an 

alfalfa stand, and planting decision timing weaken the effect on alfalfa price in a specific year. 

Lagging the alfalfa prices by a longer period to reflect the life cycle of alfalfa is not suitable 

because a portion of the total acreage will come up for replanting each year. The insignificant 

statistical effect of alfalfa prices carries over to the gross revenue variable in certain model 

specifications.   

 On the other hand, cotton prices are found to be statistically significant in crop mix 

models. Recall from Chapter 4 how cotton market prices differ from the price received by 

farmers. As such, the December Futures price for cotton is included in the crop mix regressions 

in the gross revenue measure. Cotton is also eligible for federal farm program payments which 

influence grower revenues. A relative annual index for total payments is tested along with a per 

acre measure. Because the per acre measure accounts for fluctuations in total payments 

stemming from cotton acres planted, it is the preferred federal commodity payment variable. The 

final federal cotton commodity variable also dropped two program payment categories because 

of concerns about measurement and influence on acres planted, as discussed in Chapter 4. 

 It is possible there could be a relationship between federal commodity payments for 

cotton and the December Futures cotton price. This study examined the relationship between 

these two variables through their correlation coefficient. Including two or more variables that are 

highly correlated in a regression can cause standard errors to be inflated leading to wide 
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confidence intervals and small t-statistics (Williams, 2015). However, this is not the case with 

these two variables that contribute to farmer revenue. The correlation coefficient between 

December Futures and the federal cotton commodity payments is 0.199. Typically, correlation 

coefficients greater than 0.7 are considered strong and cause for concern. Since the December 

Futures price for cotton and federal cotton subsidies are not highly correlated, both can be 

included in the same regression. Both are often significant with expected signs in the same 

model. These variables increase cotton revenues and drive farmers toward planting cotton and 

away from alfalfa. 

 These price variables are also considered in the crop mix and water deliveries models 

through the gross revenue variables described in Chapter 4. The gross revenue variables account 

for annual variations in the state price for alfalfa and winter wheat and the December Futures 

price for cotton along with the county level time-variant changes in crop yield (for alfalfa and 

cotton). Even though alfalfa prices alone are not statistically significant, when combined with 

alfalfa yields, they do have an impact on the percentage of alfalfa planted. A higher alfalfa gross 

revenue prompt farmers to increase alfalfa acreage. The opposite effect is present for the gross 

revenue of cotton plus wheat. Unlike the gross revenue of alfalfa, the gross revenue of cotton and 

wheat also positively influences agricultural water deliveries.  

 The impact of energy costs and difficulty in finding a variable to capture that cost 

component was discussed in Chapter 4. Regional diesel prices are tested as a viable proxy 

explanatory variable in various different preliminary model specifications. In nearly all 

regressions, diesel prices are not found to be statistically significant. Because the diesel prices do 

not seem to impact crop mix or water delivery decisions, this variable is not included in any final 

models. It may be that diesel prices are not a good proxy for on farm energy costs in agricultural 

crop mix and water delivery decisions. Further research into measures of energy costs should be 

conducted before determining the effect on the production of crops and water deliveries.  

Unlike electricity costs, where there is not a clear time-varying measure to evaluate, the 

price of surface water for growers is easily included in models of water deliveries. The Central 

Arizona Project (CAP) water prices are hypothesized to impact agricultural water delivery 

decisions by central Arizona growers. The current year price is used in regressions because 

prices are posted years in advance giving growers insight into future trends and time to adapt. 
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One would expect an increase in the price of CAP water to reduce agricultural deliveries. This 

result is present in many of the preliminary models lending to the inclusion of the variable in the 

final model specification. CAP water prices are not found to be statistically significant in the 

final fixed-effects model. 

The literature on agricultural water deliveries that informs this study report the power of 

crop mix and acres in predicting water deliveries. Cropland Data Layer (CDL) measures are a 

major determinant of agricultural water deliveries (McGreal & Colby, 2022). With these results 

in mind, preliminary water deliveries regressions included CDL crop acreage variables. The 

regressions with CDL variables have high explanatory power. Nearly all variation in agricultural 

water deliveries is captured by the CDL variables and most other variables are found to be 

statistically insignificant. Because of how influential crop mix and acreage are in determining 

water deliveries, these types of CDL variables are excluded from the final model specification of 

crop mix. This allows some of the other independent variables to recapture some of the 

explanatory power. Excluding CDL variables also reduces the chance of overfitting the 

regressions. 

 The logic for evaluating climatic impacts separately through temperature and 

precipitation was covered in Chapter 4. The timing of these two variables differs between the 

crop mix and water deliveries models. Precipitation and temperature are lagged by one year in 

the crop mix models because planting decisions are made at the beginning of the year. Farmers 

do not have perfect foresight regarding weather trends and are unlikely to make decisions based 

on weather forecasts. They must rely on past weather events and trends to determine cropping 

decisions. Temperature is included in preliminary crop mix models, but its insignificance leads 

to its exclusion from the final model. Precipitation is often significant in preliminary regressions. 

Lagged precipitation acts as a proxy for soil moisture which is more likely to influence farmers’ 

planting decisions at the start of the year (Sehler et al. 2019). 

 Whereas farmers must make cropping decisions each year prior to the beginning of the 

planting cycle year and are then locked in on their choices, there is greater flexibility when it 

comes to agricultural water deliveries and the quantity of water applied per acre. Water orders 

are made throughout the growing season. Because of the year-round nature of water application 

decisions, farmers can be expected to possess the ability to react to current temperature and 
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precipitation conditions. Even though central Arizona is an arid region, precipitation is found to 

be statistically significant in explaining variation in water deliveries. When precipitation 

increases, water deliveries decrease. The opposite would be expected for temperature. As 

weather gets hotter, one would believe farmers to increase their agricultural water deliveries. 

Temperature and precipitation are included in the final water deliveries model defined in Chapter 

6. Temperature, though significant in preliminary OLS models (Table 7), is not found to be 

significant in the final model (Table 10).  

 With the discussion of possible independent variables completed in this section, the next 

section focuses on an analysis of the statistically significant variable coefficients. It also 

considers a possible alternative functional form for the alfalfa acreage model. 

5.3 Econometric Analysis and Functional Form 
Certain independent variables stand out in the alfalfa crop mix and the agricultural water 

deliveries regressions because they are consistently statistically significant with coefficients that 

align with basic economic expectations. The final OLS regressions include these choice 

variables. The results and implications of these OLS regressions are presented in this section. 

In the basic OLS percentage alfalfa model including lagged precipitation, federal cotton 

payments per acre, and the lagged gross revenues for alfalfa and cotton plus winter wheat, only 

the estimated coefficient for lagged precipitation is statistically significant. The full regression 

results are presented in Table 6. The negative sign of the coefficient indicates that an increase in 

annual precipitation would decrease alfalfa acreage in the next year. This result does not 

immediately make sense because alfalfa is a water intensive crop that one would expect would 

benefit from higher precipitation and soil moisture. Additionally, the explanatory power of this 

model is extremely low with an R2 of 0.0702. The low R2 and insignificant coefficients may be 

the result of violations of important OLS assumptions. Robustness checks are conducted in the 

next section to determine the validity of the OLS percentage alfalfa model. 

Like the alfalfa OLS model, the agricultural water deliveries model has a low R2 of 

0.1230 and only one out of five independent variables has a statistically significant estimated 

coefficient (Table 7). Water deliveries are regressed on the current year temperature and 

precipitation, CAP water price, and gross revenues of alfalfa and cotton plus winter wheat. 
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Temperature is found to be statistically significant but the negative sign on the coefficient is 

troubling. The model predicts that an increase in temperature decreases water deliveries to 

agriculture when one would assume the opposite to be true. As with the percentage alfalfa 

model, robustness checks are completed to validate the results of this OLS water deliveries 

model. 

 Both the water deliveries and crop mix models are estimated using OLS. OLS regressions 

can still be used to predict crop mix even with a limited dependent variable by using robust 

standard errors. Although, the models could predict values outside of the boundaries of the 

dependent variable in the percentage alfalfa models because it is bounded by zero and one. 

Alternative functional forms are considered, but OLS is still a valid estimator for proportional 

dependent variables through the use of robust standard errors with results that are easier to 

interpret (Lewis & Linzer, 2005). Papke and Wooldridge develop a method modeling fractional 

dependent variables which they then apply to a data set of employee participation rates in 401(k) 

pension plans (1996). In Papke and Wooldridge’s model, their dependent variable is bounded 

between zero and one, as is the case in this study’s model of percentage of planted acres with 

alfalfa. The authors propose the use of a generalized linear model (GLM) linked to a logit 

function (1996). The logit link function initiates a logit transformation of the dependent variable, 

and the binomial family can be used even if the dependent variable is continuous (Baum, 2008). 

Instead of performing the necessary transformations manually, the GLM technique in Stata can 

be used to generate predictions and transform them back into the units of the response variable 

automatically (Baum, 2008). Maximum likelihood models and seemingly unrelated regression 

estimation (SURE) methods have been also used to estimate consumer demand models with 

limited dependent variables (Thompson, 2022; Morley 1997; Heien & Wesseils, 1990). Because 

the OLS regressions are easier to interpret, they are applied to this analysis of crop mix with the 

awareness that predicted values might exceed the boundaries.  

5.4 Robustness Checks 
 With the choice variables and functional form determined, robustness checks can now be 

completed on the estimated models. The OLS models estimated rely on the assumption that the 

variance of the error term is constant (homoskedasticity). Even if this assumption is violated and 

heteroskedasticity is present among the error terms, the OLS estimates are still unbiased. 
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However, they will no longer have the smallest variance meaning tests of significance are biased 

(Williams, 2020). Heteroskedastic errors are of concern in this study because the irrigation 

districts within the study area are structurally different. These differences could cause OLS 

regressions to generate heteroskedastic errors. As such, it is important to confirm the suspicion of 

heteroskedasticity with robustness checks. The first rough test for heteroskedasticity in a model 

is an observation of a plot of the residuals plotted against fitted values. Ideally, one should 

observe residuals with even widths across the plot. Figures 27 and 28 show the residuals plots for 

the alfalfa acres and water deliveries models. The residuals in Figure 28 for the water deliveries 

model do not display constant variance. On the other hand, the residual plot for the percentage 

planted alfalfa model in Figure 27 shows residuals that are more evenly distributed. It may be 

that district structural differences more greatly affect water deliveries than crop mix. If the plot 

shows some residuals higher than others (as is the case in the water deliveries model), more 

formal tests may be conducted such as the Breusch-Pagan Test for Heteroskedasticity. This test 

compares fitted values to residuals errors to determine if constant variance of the errors terms is 

present. The null and alternative hypotheses are as follows: 

𝐻𝐻0:𝐸𝐸𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝐹𝐹 𝑝𝑝𝑝𝑝𝑡𝑡 ℎ𝐹𝐹𝑡𝑡𝐹𝐹𝐹𝐹𝑜𝑜𝑡𝑡𝑝𝑝𝑝𝑝𝐹𝐹𝑡𝑡𝑝𝑝𝑐𝑐 

𝐻𝐻1:𝐸𝐸𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝐹𝐹 𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝐹𝐹𝑡𝑡 ℎ𝐹𝐹𝑡𝑡𝐹𝐹𝐹𝐹𝑜𝑜𝑡𝑡𝑝𝑝𝑝𝑝𝐹𝐹𝑡𝑡𝑝𝑝𝑐𝑐 

A rejection of the null hypothesis implies heteroskedastic errors. This is then corrected by 

employing robust standard errors and through district fixed-effects. The Breusch-Pagan test for 

both models is conducted with the results reported in Table 8. The assumption of homoskedastic 

errors is rejected for the water deliveries model with a high 𝜒𝜒2 of 47.39 and a p-value 

approaching zero, but the same cannot be said for the percent planted alfalfa model. The small 

𝜒𝜒2 of 0.26 in this model and corresponding p-value of 0.6108 do not warrant cause for concern 

from heteroskedastic errors. This result is consistent with the visual inspection of Figure 27.  

Regardless of these findings, both models are estimated using fixed-effects for completeness in 

the next chapter. 
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Chapter 6: Econometric Results 
 With the basic OLS model specifications and the process of robustness checks covered in 

Chapter 5, this chapter focuses on the final models of percent alfalfa acreage and agricultural 

water deliveries. To correct for the potential heteroskedastic errors detected in Chapter 5, the 

final models employ fixed-effects through demeaning to control for irrigation district level 

structural differences. Lastly the interpretations of the results and coefficients from the final 

fixed-effects models are discussed.  

6.1 Fixed-Effects Models 
 This chapter presents the final choice models informed by the preliminary OLS model 

estimates and analysis in Chapter 5. As discussed, this study estimates a model of the percentage 

of planted acreage in alfalfa and a model of agricultural water deliveries. Recall the construction 

of the dependent variable in equation (17) for the crop mix model. The choice model estimates 

the percentage of planted acreage covered with alfalfa in irrigation district i in year t. 

𝑇𝑇𝑇𝑇𝐴𝐴𝑐𝑐𝑐𝑐 =  𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽1𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐−1 + 𝛽𝛽2𝐹𝐹𝑡𝑡𝑝𝑝𝑇𝑇𝐹𝐹𝑡𝑡𝑇𝑇𝑝𝑝𝐹𝐹𝑎𝑎𝑐𝑐 + 𝛽𝛽3𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺𝐴𝐴𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑎𝑎𝑐𝑐−1 +

𝛽𝛽4𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺(𝑇𝑇𝐹𝐹𝑡𝑡𝑡𝑡𝐹𝐹𝑝𝑝 + 𝑊𝑊ℎ𝑡𝑡𝑝𝑝𝑡𝑡)𝑎𝑎𝑐𝑐−1 + 𝑡𝑡𝑐𝑐𝑐𝑐   (20) 

The alfalfa crop mix decisions estimates depend on last year’s precipitation in county/AMA a.  

Federal cotton payments per acre in county a in year t also influence the crop mix decisions. The 

last two independent variables included are the gross revenue of alfalfa and of cotton plus winter 

wheat in county a in year t-1. Recall, that variables are lagged in the crop mix model because 

farmers make their planting decisions early in the year and must rely on the previous years’ 

trends. Finally, a constant (𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃) and error term (𝑡𝑡𝑐𝑐𝑐𝑐) are included. 

 Shifting to the agricultural water deliveries model, the model is presented with some 

similarities, but also vital differences. 

𝐴𝐴𝑊𝑊𝑇𝑇𝑐𝑐𝑐𝑐 =  𝛼𝛼𝐷𝐷 + 𝛿𝛿1𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐 + 𝛿𝛿2𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐 + 𝛿𝛿3𝑇𝑇𝐴𝐴𝑇𝑇𝑐𝑐 + 𝛿𝛿4𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺𝐴𝐴𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑎𝑎𝑐𝑐 +

𝛿𝛿5𝐺𝐺𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺(𝑇𝑇𝐹𝐹𝑡𝑡𝑡𝑡𝐹𝐹𝑝𝑝 + 𝑊𝑊ℎ𝑡𝑡𝑝𝑝𝑡𝑡)𝑎𝑎𝑐𝑐 + 𝑡𝑡𝑐𝑐𝑐𝑐  (21) 

Here, the dependent variable is total agricultural water deliveries in acre-feet to irrigation district 

i in year t. Independent variables in the water deliveries model are estimated with the current 

year values because growers submit orders throughout the year and have greater flexibility to 
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react to changing conditions. Precipitation and the gross revenues of alfalfa and cotton plus 

winter wheat are included in both models. The water deliveries model deviates from the 

percentage alfalfa model with the inclusion of temperature and the CAP water costs. With the 

variables in both models defined, the next section discusses the process of including fixed-effects 

to correct for the heterogeneity detected in robustness checks in Chapter 5. 

6.2 Demeaning Approach to Fixed-Effects 
Group-specific fixed-effects can eliminate group-specific unobserved heterogeneity and 

provide unbiased estimates of independent variables (Bruder & Ludwig, 2014). One approach is 

to demean variables by subtracting the group-specific (irrigation district) average value of a 

given variable in a district from each individual observation in that district. The resulting 

variables have a mean of zero within each district. The demeaning approach allows focus on 

variation over time but ignores variation across irrigation districts that are unchanging over time. 

Model estimates are then based on the within district variation over time and irrigation district 

specific heterogeneity will no longer disturb the estimation (Bruder & Ludwig, 2014). One can 

distinguish between and within variation. Group differences are captured in the between 

variation. This is generally of lesser importance than the within variation generated by changes 

over time within a group. The within variation measures variation of the demeaned data (Bruder 

& Ludwig, 2014). In McGreal and Colby (2022), the authors measure the explanatory power of 

their model of irrigation district water deliveries through the R2 Within and the R2 Between. The 

R2 Within captures variation in the dependent variable within an irrigation district over time. 

Variation between irrigation districts is measured by the R2 Between but this is of less interest.  

 Bruder & Ludwig (2014) present the Least Squares Dummy variable (LSDV) regression 

as an alternative method to controlling for group heterogeneity. By including N-1 dummy 

variables for groups you can control for structural time-invariant differences. McGreal and Colby 

consider this approach but choose to use the demeaning approach to fixed-effects to preserve 

degrees of freedom in their analysis. Though mathematically the same as LSDV, the demeaning 

approach helps to avoid potential “overfitting” due to dummy variables (McGreal and Colby, 

2022). 

 The final models presented in this chapter follow McGreal and Colby’s methodology to 

control for district fixed-effects by demeaning variables. Preliminary models are estimated using 
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the LSDV approach, but the models are overfitted, explaining nearly all the variation in the 

dependent variable with R2 values equal to 0.98 or higher (degrees of freedom equal 176). 

Excluding the district level dummy variables results in models with lower explanatory power 

indicating that irrigation district structural differences are extremely important in explaining 

differences in crop mix and water deliveries. Even though the demeaned fixed-effects models do 

not have as high R2 value as the LSDV models, the explanatory power increases compared to the 

OLS models without any fixed-effects. The final percentage alfalfa model estimated in Table 9 

has an R2 Within of 0.2285 and an R2 Between of 0.5246. This means this model of crop mix 

decisions is able to explain variation between irrigation districts better than it is able to explain 

variation within a district over time. Table 10 shows the results for the agricultural water 

deliveries model and the corresponding R2 Within of 0.2886 and R2 Between of 0.1786. The 

water deliveries model predicts variation in a district over time at about the same level as the 

percentage alfalfa model, but its power to explain differences between district deliveries is much 

lower. Just as robustness checks for heteroskedasticity are conducted for the OLS models, a 

Wald Test for Groupwise Heteroskedasticity is completed for the fixed-effects models estimated 

in this chapter with the following null and alternative hypotheses (where 𝜎𝜎2 is the variance). 

𝐻𝐻0:𝜎𝜎𝑐𝑐2 = 𝜎𝜎2 𝑓𝑓𝐹𝐹𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 

𝐻𝐻1:𝜎𝜎𝑐𝑐2 ≠ 𝜎𝜎2 𝑓𝑓𝐹𝐹𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 

Both the alfalfa and water deliveries models are found to have groupwise heteroskedastic errors 

(Table 8). As such the models are estimated using robust standard errors. The models estimated 

with robust standard errors are reported in Tables 9 and 10 and are discussed in greater detail in 

the next section.  

6.3 Interpretations and Implications of Significant Variables 
Now that the explanatory power of the final models for percentage planted alfalfa and 

agricultural water deliveries has been discussed, this section focuses on the specific coefficient 

estimates and the implications of these results. A consistent finding is that the fixed-effects 

models perform better than the OLS regression from Chapter 5. 



56 
 

6.3.1 Percent Planted Alfalfa Model 

 The fixed-effects alfalfa regression presents multiple differences from the OLS regression 

in Chapter 5, both in explanatory power and statistically significant coefficients (Table 9). The 

first significant variable in the percentage planted alfalfa model is lagged average county 

precipitation. Recall that this independent variable is also statistically significant in the OLS 

regression in Chapter 5 but has a negative estimated coefficient (Table 6). The positive sign of 

this coefficient indicates that increases in precipitation in a given year leads to a higher 

percentage of alfalfa acreage planted in the next year. A one inch increase in the average 

monthly precipitation would increase the estimated proportion of alfalfa by 0.05. The 

implications of this rather large positive coefficient are not clear. For one, recall the discussion in 

Chapter 5 about alfalfa cropping decisions. Only 15-20% of all alfalfa crops can be expected to 

change in a given year based on the productive life of the crop. However, greater precipitation in 

past years leads to greater soil moisture (Sehler, 2019). This creates conditions that are more 

favorable to the crops (Earth Observing System, 2019). Alfalfa is one of the more water 

intensive crops so greater soil moisture may encourage farmers to plant more of this crop. When 

compared to cotton in a 12 month rotation with other crops, the difference in alfalfa water needs 

is modest.  

 The federal cotton payments per acre are statistically significant in the fixed-effects 

model, a difference from the OLS regression. The negative sign of this coefficient aligns with 

basic economic theory that as the price of competitive goods increases, supply for the other good 

decreases. Growers with the ability to plant cotton are incentivized through federal farm program 

payments to decrease their alfalfa acreage since this crop is not eligible for federal payments.  

The size of this coefficient and the other economic variables are smaller than the effect from 

precipitation. A dollar increase in the federal payments per acre would decrease the estimated 

proportion of alfalfa by 0.0001.  

 The lagged gross revenues of alfalfa and of cotton plus wheat also become significant 

when fixed-effects are included in the model estimation. The magnitude of the effects of alfalfa’s 

gross revenue and cotton plus wheat’s gross revenue are equivalent in size to the estimated 

coefficient of federal cotton payments per acre. The estimated coefficient for the gross revenue 

of alfalfa in this model is positive which conforms to standard economic expectations. The 
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negative sign on the cotton and wheat gross revenue variable also aligns with expectations. As 

alfalfa earns more money and cotton and wheat earn less, growers will be more likely to plant 

alfalfa.  

6.3.2 Agricultural Water Deliveries Model 

 Shifting the discussion to the model of agricultural water deliveries, the fixed-effects 

model also performs better than the OLS model with the same explanatory variables (Table 9). 

An interesting result is that the insignificant and significant climatic variables in the two models 

flip when fixed-effects are included. Temperature is insignificant, and precipitation become 

significant. The negative sign aligns with the expectation that more precipitation would decrease 

the need for irrigation water. However, the large magnitude of this coefficient is cause for 

concern. It would not be unexpected for larger irrigation districts with higher annual agricultural 

water deliveries to experience variations of 10,000 AF in a year. For some of the smaller 

irrigation districts, total annual deliveries do not even reach that amount. The size of 

precipitation’s estimated coefficient is more than 30 times the size of average deliveries to the 

smallest district STID.  

 The price of CAP water is not statistically significant. This suggests that farmers are not 

responsive to changes in water price. Another insignificant variable is the gross revenue of 

alfalfa. Prices of alfalfa (insignificant in other studies, McGreal, 2021) are used in the 

construction of this variable, so this result is not particularly surprising. 

 On the other hand, the gross revenue of cotton plus wheat is statistically significant. The 

estimated positive effect states a dollar per acre increase in the gross revenue of cotton plus 

wheat leads to a 19 AF increase in agricultural water deliveries in an irrigation district. As crops 

become more profitable, one expects farmers would choose to increase their water deliveries to 

ensure high yields of such crops. 

 One other troubling aspect of the agricultural water deliveries model is the size of the 

estimated constant (92,476 AF). About half of the irrigation districts included in this study do not 

have any annual agricultural deliveries close to that figure while the two biggest districts 

consistently use more than double this amount of water. It seems that even with the district level 

fixed-effects through demeaning, the range of deliveries to districts negatively impacts model 

results. This inflated estimated constant is not present in the water deliveries model estimated 
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with SCIDD (Appendix A.2, Table A3). This interesting result is discussed further in Appendix 

A.2. 

 This chapter has detailed the final fixed-effects models estimated in this study and the 

interpretations of the statistically significant estimated coefficients. The next chapter discusses 

the policy implications of these results. 
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Chapter 7: Conclusion and Policy Implications 
 It is clear that Arizona and the arid American West are in a growing predicament with 

their current water challenges. Hotter drier weather conditions are impacting snowpack melt 

times leading to diminished Colorado River flows. Arizona is experiencing a long-term period of 

aridification that may become permanent (Ferris & Porter, 2021). The dire nature of this situation 

is highlighted by the Bureau of Reclamation’s Tier 1 water shortage declaration reducing 

Colorado River water available to Arizona and other lower basin states and Mexico. Before the 

CAP was completed to deliver Colorado River water to central Arizona, growers relied on 

groundwater and some local surface water. Groundwater still composes nearly half the water 

used in the CAP region (Ferris & Porter, 2021). While the availability of CAP water has led to 

increasing water levels in central Arizona, it is now possible that central Arizona growers may 

need to supplement decreased surface water sources with more groundwater. This is a troubling 

scenario when the agricultural sector is already the largest contributor to unreplenished 

groundwater use in the Phoenix, Pinal, and Tucson AMAs (Ferris & Porter, 2021). 

 Even with the current regulations in place in central Arizona through the GMA, 

groundwater is still pumped in an unsustainable manner (Ferris & Porter, 2021). This issue will 

likely worsen with the Colorado River water cutbacks. This study is important because the 

findings helped to determine drivers of agricultural water use and crop mix decisions. These 

factors influence the rate farmers will move back to groundwater when surface water fails to 

meet their supply needs. 

In some ways, urbanization has helped Arizona’s water situation. When high water use 

agricultural lands are converted for urban development, water use becomes less intensive and 

declines on said parcel. Nearly 200,000 acres of agricultural land have been retired from 

production in the Phoenix AMA since 1985. Considering that Arizona agriculture consumes an 

average of 4.2 AF/acre this is an estimated reduction of over 800,000 AF per year (Frisvold, 

2015). Population in Arizona’s capital city, Phoenix, increased 120% in the same time period 

while municipal water demand only grew by 70%. Improvements in efficiency have also been 

achieved through urban and agricultural conservation efforts and technology adoption. These 

reductions in demand are important, but alone are not enough to help AMAs reach sustainable 

groundwater levels (Ferris & Porter, 2021). 
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Water managers have begun to explore further solutions for the water situation faced by 

central Arizona. Investments by municipal water providers in treatment plants to augment supply 

through reclaimed water have totaled billions of dollars (Ferris & Porter, 2021). Reclaimed water 

is widely used as an irrigation source in the urban setting for fields, parks, and golf courses. In 

Phoenix, this reclaimed water is delivered to the Palo Verde Nuclear Generating Station as a 

cooling source (Tenney, 2018). Reclaimed water and unused CAP water have been used to 

artificially recharge aquifers across central Arizona. The Arizona Water Banking Authority has 

banked nearly 4.5 MAF for future Arizona use (Arizona Water Banking Authority, 2022). 

This study aims to determine drivers of central Arizona crop mix selection and 

agricultural water use. It began with an introduction to the current conditions facing agricultural 

water users in fourteen irrigation districts in three central Arizona AMAs. With the supply of 

agricultural water affected by the 512,000 AF Colorado River shortage, agricultural production 

can be expected to also be impacted. Farmers may switch to less water intensive crops, fallow 

their lands, or supplement with additional groundwater resources. Chapter 2 provided a history 

of Arizona’s water policy and agricultural water use trends. The economic literature on 

agricultural water demand also discussed in Chapter 2 informed the conceptual model of 

agricultural production and water demand developed in Chapter 3. Agricultural production is 

used to derive the demand of irrigation water. This conceptual model was then incorporated with 

the data discussed in Chapter 4 for the empirical analysis presented in Chapter 5 and 6.  

The final fixed-effects percentage alfalfa model estimated in Chapter 6 finds that climatic 

and economic conditions do affect crop mix decisions. Lower precipitation is found to decrease 

the share of alfalfa planted in the study region. Perhaps as drought conditions persist in central 

Arizona, farmers may begin to plant less water intensive crops. Alternatively, alfalfa farmers can 

adopt a deficit irrigation strategy where they apply less than optimal levels of irrigation water to 

harvest lower yields without needing to completely fallow acreage. Alfalfa is a resilient crop and 

can return to maximum yield levels when the correct water intensity is applied even after periods 

of deficit irrigation (Hanson et al., 2007; Lindenmayer et al., 2011). This work focused on crop 

acreage and irrigation water deliveries under normal application conditions. Future research 

might examine less water intensive crops and trends in their acreage or water deliveries under 

deficit irrigation strategies across central Arizona. While the federal cotton commodity payments 
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are not based directly on acres planted each year, these programs still seem to have an impact on 

crop mix decisions. Consistent results appear in cotton and alfalfa models finding that increases 

in these payments are associated with increased cotton acres, while also decreasing alfalfa acres. 

The gross revenue potential of a crop is also important in production decisions. If alfalfa’s gross 

revenue decreases, the percentage of acreage planted with alfalfa declines. Increases in the gross 

revenue of cotton plus winter wheat also lead to an estimated decrease in the proportion of alfalfa 

acres. Changes in the proportion of alfalfa acreage can be expected to occur at slower rates than 

those of annual crops like cotton. These results can inform agricultural producers and 

policymakers about ways to influence crop mix which is one of the biggest drivers of agricultural 

water use. 

Besides changing the cropping patterns in central Arizona, other factors influence 

agricultural water use according to regression results from Chapter 6. The climate is found to 

influence water deliveries. The negative impact of precipitation was more consistently 

statistically significant, but under certain models, temperature is found to affect water deliveries. 

If drought conditions persist, one can expect agricultural growers to increase their agricultural 

water deliveries. Policymakers and water managers should consider long-term solutions opposed 

to quick fixes since these climate conditions are not expected to improve in the coming years.  

Another important result from the agricultural water deliveries model is the 

insignificance of the CAP price of water. As CAP water becomes scarcer with federal Colorado 

River drought declarations, water managers may be restricted in their ability to use price 

increases as a tool to decrease water demand. The current cost of pumping groundwater does not 

reflect the actual social costs of extractions. If policymakers could capture the total social cost of 

groundwater pumping through increased electricity costs or stricter regulations, extraction might 

decline to more sustainable levels, but that is reliant on the assumption of price elasticity of 

water demand. The pumping cost of groundwater is especially important in determining the rate 

of substitution between surface water and groundwater. While this work attempts to estimate 

future agricultural water deliveries to central Arizona, the share of water resources will depend 

on the costs of surface water and groundwater. Growers will substitute surface water with 

groundwater as long as they have the rights to pump and it is economically feasible. 



62 
 

The focus of crop mix selection in this study is important to economic literature. McGreal 

and Colby (2022) find crop mix to be a major determinant of agricultural water use in central 

Arizona. This result is confirmed in preliminary OLS water delivery models. The final model 

presented in Chapter 6 presented factors that are found to be statistically significant in predicting 

the share of alfalfa planted. This model could be adapted through future research for other 

significant Arizona crops to get a more complete look at Arizona’s agricultural impacts. 

The contributions of this work extend to the use of remote sensed land cover data 

provided through the CDL. The CDL has only been available in the entire contiguous United 

States since 2008, so it has not been widely explored in agricultural economic literature. The 

empirical analysis in Chapter 5 uses these data in three main ways. Firstly, total planted area and 

specific crop acreage are employed in different forms in the dependent variables. Initial OLS 

water deliveries models included alfalfa and cotton acreage as explanatory variables. CDL 

variables were dropped from the final water deliveries models because of their extreme power to 

explain the variation in deliveries. Finally, the CDL’s land cover data were incorporated with the 

EWG cotton commodity payments to create a per acre payment variable that is included in the 

final crop mix model. 

While this work was able to identify certain drivers of agricultural water demand and 

crop mix selection by central Arizona agricultural growers, certain questions remain that provide 

areas for future research work. The highly subsidized and time-invariant nature of electricity 

costs for irrigation districts prevent the inclusion of such a metric in econometric analysis of 

water demand. But basic economic production theory supports the inclusion of a measure of 

energy costs in agricultural production and water demand estimations. Diesel prices were tested 

as a proxy for other on farm energy costs in the econometric analysis presented in Chapters 5 and 

6 but were not found to be significant in this work. Future research could focus on how best to 

include energy costs in models of agricultural production and in water demand econometric 

analysis. 

The inclusion of the EWG cotton commodity payment data is another contribution of this 

work. Federal commodity payments contribute to farmer revenue and significantly impact share 

of crop acreage as found by models in Chapter 5 and 6. The impact of federal cotton commodity 

programs on central Arizona crop mix decisions is discussed in detail in this study, but the 
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complexity and diversity of these programs remains to be fully examined. Cotton is not the only 

commodity eligible for federal payments; subsidized insurance policies are available for over 

100 crops in the US (EWG, 2021). Even within the cotton programs, changes occur about every 

five years with new iterations of federal farm bills that change payment structures. Further 

research questions regarding the impacts of federal crop commodity payments are abundant. 

There exists a lack of available water use data on irrigation districts outside the AMAs. 

Agricultural production occurs throughout the state of Arizona, but irrigation districts outside of 

AMAs in areas such as Yuma are not subject to the same water use reporting requirements. 

Therefore, the question of whether the results found in this study hold in irrigation districts 

outside of central Arizona AMAs remains unanswered.  

There is clearly lots of work to be done by Arizona water managers, policymakers, and 

agricultural growers. Strides have been made in the last century to better manage the state’s 

scarce water resources. The Groundwater Management Act slowed the expansion of groundwater 

use in the most critically over pumped regions and has decreased the total amount of 

groundwater extracted in key areas of the state. The CAP opened up a whole new water source 

through the Colorado River to further decrease the state’s reliance on groundwater. The 

management of the state’s water portfolio requires water managers and policymakers to 

understand the drivers of water demand. This work helps identify such drivers from agricultural 

production to contribute to that goal of efficiently and effectively managing a resource that 

grows scarcer each day. 
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Figures 
Figure 1: Total Water Deliveries to Agriculture by AMA 

 

Data Source: ADWR 

Notes: The sum of annual water deliveries for irrigation districts is calculated for each AMA and 
across the entire study region. 
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Figure 2: Water Deliveries to Agriculture by Top Four Districts 

 

Data Source: ADWR 

Note: These four districts have the highest average agricultural water deliveries. 
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Figure 3: Water Deliveries to Agriculture by Middle Six Districts 

 

Data Source: ADWR 

Note: These six districts have the middle average agricultural water deliveries. 
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Figure 4: Water Deliveries to Agriculture by Bottom Four Districts 

 

Data Source: ADWR 

Note: These four districts have the lowest average agricultural water deliveries. 
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Figure 5: Share of Alfalfa Planted by Top Five Districts 

  

Data Source: USDA NASS Cropland Data Layer 

Note: These five districts have the highest average alfalfa percent planted. 
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Figure 6: Share of Alfalfa Planted by Middle Five Districts 

   

Data Source: USDA NASS Cropland Data Layer 

Note: These five districts have the middle average alfalfa percent planted. 
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Figure 7: Share of Alfalfa Planted by Bottom Four Districts 

  

Data Source: USDA NASS Cropland Data Layer 

Note: These four districts have the lowest average alfalfa percent planted. 
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Figure 8: Share of Cotton Planted by Top Four Districts 

  

Data Source: USDA NASS Cropland Data Layer 

Note: These four districts have the highest average cotton percent planted. 
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Figure 9: Share of Cotton Planted by Middle Six Districts 

  

Data Source: USDA NASS Cropland Data Layer 

Note: These six districts have the middle average cotton percent planted. 
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Figure 10: Share of Cotton Planted by Bottom Four Districts 

  

Data Source: USDA NASS Cropland Data Layer 

Note: These four districts have the lowest average cotton percent planted. 
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Figure 11: Average Share of Major Crops Planted by All Districts 

  

Data Source: USDA NASS Cropland Data Layer 

Note: The average share of each crop grouping is calculated across all fourteen districts. 
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Figure 12: County Alfalfa Yields 

 

Data Source: USDA NASS 
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Figure 13: County Cotton Yields 

 

Data Source: USDA NASS 
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Figure 14: Arizona Winter Wheat Yields 

 

Data Source: USDA NASS 
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Figure 15: Real Arizona Alfalfa Prices 

 

Data Source: USDA NASS 
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Figure 16: Arizona Winter Wheat Price 

 

Data Source: USDA NASS 
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Figure 17: Real Cotton December Futures 

 

Data Source: New York Cotton Exchange 
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Figure 18: Real Alfalfa County Gross Revenue 

 

Data Source: USDA NASS 
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Figure 19: Real Cotton + Wheat County Gross Revenue 

 

Data Source: USDA NASS and New York Cotton Exchange 
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Figure 20: Average Real Gross Revenue Across Maricopa, Pima, and Pinal Counties 

 

Data Source: USDA NASS and New York Cotton Exchange 
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Figure 21: Real CAP Water Prices 

 

Data Source: CAP 
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Figure 22: Real Diesel Prices 

 

Data Source: US Energy Information Administration 
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Figure 23: Average County Temperature 

 

Data Source: West Wide Drought Tracker 
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Figure 24: Average County Precipitation 

 

Data Source: West Wide Drought Tracker 
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Figure 25: Total Real Federal Cotton Commodity Payments 

 

Data Source: EWG 

  

$0

$5,000,000

$10,000,000

$15,000,000

$20,000,000

$25,000,000

$30,000,000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

20
20

$

Year

Maricopa Pima Pinal



89 
 

Figure 26: Total County Cotton Payments Per Cotton Acre 

 

Data Source: EWG 
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Figure 27: Residuals – Percentage Planted Alfalfa 
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Figure 28: Residuals – Agricultural Water Deliveries 

 

n = 182 
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Tables 
Table 1: Summary Statistics – Water Deliveries 

 

  Water Deliveries 
Agricultural Water 

Deliveries  
Unit of Measure acre-feet acre-feet 

Mean 126,216 86,851 
Min 247 247 
Max 593,828 338,502 

Standard Deviation 150,344 90,151 
n = 182 
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Table 2: Correlation Between Agricultural Water Deliveries and Planted Area by District 
 

District Correlation Coefficient (Ag 
Water & Planted Area) 

Arlington Canal Company -0.0726 
Buckeye Water Conservation and Drainage District -0.1762 

Central Arizona Irrigation and Drainage District 0.3778 
Cortaro-Marana Irrigation District 0.1343 

Hohokam Irrigation District 0.5980 
Maricopa-Stanfield Irrigation and Drainage District 0.3358 

Maricopa Water District 0.1225 
New Magma Irrigation and Drainage District 0.2420 

Queen Creek Irrigation District 0.6695 
Roosevelt Irrigation District 0.3854 

Roosevelt Water Conservation District 0.5077 
Salt River Project 0.7149 

San Tan Irrigation District -0.0382 
Tonopah Irrigation District 0.1912 

Overall 0.9662 
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Table 3: Summary Statistics – Irrigation Districts 
 

District AMA Average Ag 
Deliveries (AF) 

Total 
Acres 

Average 
Planted 
Acres 

Arlington Canal Company Phoenix 26,417 5,481 3,894 
Buckeye Water Conservation 

and Drainage District Phoenix 122,838 21,905 16,422 
Central Arizona Irrigation and 

Drainage District Pinal 293,259 108,913 69,697 
Cortaro-Marana Irrigation 

District Tucson 37,718 20,692 8,773 
Hohokam Irrigation District Pinal 49,745 28,371 21,281 

Maricopa-Stanfield Irrigation 
and Drainage District Pinal 278,310 103,622 58,328 

Maricopa Water District Phoenix 36,172 36,350 7,442 
New Magma Irrigation and 

Drainage District Phoenix 81,195 27,199 17,461 
Queen Creek Irrigation District Phoenix 26,007 20,278 6,629 

Roosevelt Irrigation District Phoenix 129,057 39,207 23,684 
Roosevelt Water Conservation 

District Phoenix 38,084 41,550 7,815 
Salt River Project Phoenix 80,988 257,710 16,729 

San Tan Irrigation District Phoenix 367 3,446 428 
Tonopah Irrigation District Phoenix 15,757 4,142 3,271 

n = 13 for each irrigation district 
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Table 4: Summary Statistics – Crop Cover by Irrigation Districts 
 

District 
Average 
Alfalfa 
Acres 

Average 
Cotton 
Acres 

Average 
Grains 
Acres 

Average 
Trees 
Acres 

Average 
Pasture 
Acres 

Average 
Other 
Crops 
Acres 

Average 
Fallowed 

Acres 

ACC 3,061 142 296 2 4 391 303 
  (79%) (4%) (8%) (<1%) (<1%) (10%)   

BWCDD 12,802 713 1,800 3 4 1,101 1,238 
  (78%) (4%) (11%) (<1%) (<1%) (7%)   

CAIDD 14,222 40,320 11,841 878 378 2,246 20,261 
  (20%) (58%) (17%) (1%) (1%) (3%)   

CMID 1,464 4,315 2,882 8 10 104 1,653 
  (17%) (49%) (33%) (<1%) (<1%) (1%)   

HID 8,875 8,064 3,859 22 10 455 4,561 
  (42%) (38%) (18%) (<1%) (<1%) (2%)   

MSIDD 24,115 10,483 18,772 248 326 4,492 25,766 
  (41%) (18%) (32%) (<1%) (1%) (8%)   

MWD 2,305 208 2,311 2 81 2,551 6,417 
  (31%) (3%) (31%) (<1%) (1%) (34%)   

NMIDD 10,636 3,136 2,657 9 12 1,017 3,434 
  (61%) (18%) (15%) (<1%) (<1%) (6%)   

QCID 3,082 1,349 1,755 61 30 352 2,689 
  (46%) (21%) (26%) (1%) (<1%) (6%)   

RID 12,956 4,088 5,385 <1 11 1,244 5,612 
  (55%) (17%) (23%) (<1%) (0%) (5%)   

RWCD 5,464 197 1,462 103 143 445 3,367 
  (70%) (3%) (19%) (1%) (1%) (6%)   

SRP 11,182 1,917 2,396 151 112 972 6,144 
  (67%) (11%) (14%) (1%) (1%) (6%)   

STID 354 20 23 14 7 10 595 
  (83%) (4%) (6%) (3%) (1%) (2%)   

TID 1,682 448 990 0 8 143 300 
  (51%) (14%) (30%) (0%) (0%) (4%)   

n = 13 for each irrigation district. Percentage of planted acres in paratheses 
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Table 5: Cropland Data Layer Variables 
 

Variable CDL Category 

Alfalfa Area Alfalfa 
Cotton Area Cotton 
Grains Area Corn, Sorghum, Barley, Durum Wheat, Winter Wheat 
Trees Area Citrus, Pecans, Pears, Pistachios, Olives, Oranges, Grapes 

Pasture Area Grassland/Pasture 
Other Crop 

Area 
Cantaloupes, Watermelon, Rye, Spring Wheat, Lettuce, Other Hay (not Alfalfa), 

Oats, Dry Beans, Potatoes, Carrots, Chickpeas, Millet, Broccoli, Cabbage, 
Honeydew, Double Croppings 

Fallowed 
Area 

Fallow/Idle Cropland 

Developed 
Area 

Developed Open Space, Low Development, Medium Development, High 
Development 
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Table 6: OLS Percent Planted Alfalfa Model Results 
 

  Percent Alfalfa 
R2 0.0702 
n 182 

Lagged Precipitation -0.2524*** 
  (0.0843) 

Federal Cotton Payments 0.00003 
per Acre (0.00007) 

Lagged Alfalfa Gross Revenue 0.00006 
  (0.00007) 

Lagged Cotton + Wheat -0.00003 
Gross Revenue (0.00007) 

Constant 0.6665 
Standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 5% (**), 

and 1% (***) level. 
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Table 7: OLS Water Deliveries Model Results 
 

  Water Deliveries  
R2 0.1230 
n 182 

Temperature -29,599.19*** 
  (7,202.59) 

Precipitation -30,950.36 
  (39,620.38) 

CAP Water Price 905.16 
  (626.95) 

Alfalfa Gross Revenue 6.27 
  (29.66) 

Cotton + Wheat -6.97 
Gross Revenue (27.15) 

Constant 2,196,832 
 Standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 5% 

(**), and 1% (***) level. 
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Table 8: Tests for Heteroskedasticity 
 

Model Test 𝝌𝝌𝟐𝟐 p-value Reject at 5%? Reject at 
10%? 

Percent 
Alfalfa Model 

Breusch-Pagan 0.26 0.6108 NO NO 

Water 
Deliveries 

Breusch-Pagan 47.39 < 0.0001 YES YES 

Percent 
Alfalfa FE 

Model 

Wald Test for 
Groupwise 

Heteroskedasticity 

1,163.30 < 0.0001 YES YES 

Water 
Deliveries FE 

Model 

Wald Test for 
Groupwise 

Heteroskedasticity 

2,198.59 < 0.0001 YES YES 
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Table 9: Fixed-Effects Percent Planted Alfalfa Model Results 
 

  Percent Alfalfa 
R2 Within 0.2285 

R2 Between 0.5246 
n 182 

Lagged Precipitation 0.0531* 
  (0.0252) 

Federal Cotton Payments -0.0001*** 
per Acre (0.00004) 

Lagged Alfalfa Gross Revenue 0.00007** 
  (0.00002) 

Lagged Cotton + Wheat -0.00004* 
Gross Revenue (0.00002) 

Constant 0.4864 
Robust standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) level. 
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Table 10: Fixed-Effects Water Deliveries Model Results 
 

  Water Deliveries  
R2 Within 0.2886 

R2 Between 0.1786 
n 182 

Temperature -195.94 
  (822.79) 

Precipitation -13,822.73*** 
  (3,478.73) 

CAP Water Price -73.06 
  (62.66) 

Alfalfa Gross Revenue -5.02 
  (6.86) 

Cotton + Wheat 19.02*** 
Gross Revenue (6.25) 

Constant 92,475.54 
 Robust standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) level. 
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A Appendices 
A.1 Data Notes 

Whenever possible, it is preferred to use raw data in the construction of the dataset used 

in these analyses. However, some variables required cleaning, fill, and variable construction 

procedures before being included in models. This section details the data work undertaken to 

ensure inclusion in the final models. Procedures are separated by major variable 

categories/sources. Table A1 shows the observations for each variable that are filled using the 

following estimation procedures. 

Irrigation District Annual Water Use 

All irrigation districts’ annual reports are available except for the 2008 Cortaro-Marana 

Irrigation District annual report. The missing water deliveries data for this year is estimated by 

the average of the other available years. When the annual report is available, the best source for 

deliveries is the Schedule D1S which reports the summaries of deliveries by source and type. 

Some irrigation districts do not include the Schedule D1S in their report. When that is the case, 

the next best action is to manually sum all deliveries to water rights beginning with ‘58-’ (farm-

owned irrigation grandfathered rights), ‘57-’ (district-owned irrigation grandfathered rights), or 

‘88-’ (irrigation rights on a farm registered as having “Best Management Practices”) on the 

Schedule D, but this method is not preferred as it is tedious and prone to human error (McGreal, 

2021). The San Carlos Irrigation and Drainage District (SCIDD) does not include either the 

Schedule D1S or Schedule D in their annual reports. Because the SCIDD represents such a large 

proportion of water deliveries in the Pinal AMA, it is still included in the preliminary models of 

this work, but ultimately excluded because of major structural differences. It is discussed further 

in Appendix A.2. “Total Water Delivered To Lands” acts as a fair proxy for total water deliveries 

to SCIDD. The sum of CAP, allocated surface water, pumped water, and natural flows is used as 

the proxy for agricultural water deliveries in SCIDD (McGreal, 2021). 

EWG Commodity Data Cleaning and Variable Construction 

Environmental Working Group (EWG) subsidy data for Arizona counties is reported 

through 2019. To fill the missing 2020 observation of cotton commodity payments, the average 

value for 2016-2019 for each county is taken. As with all other monetary variables, commodity 

payments are corrected for inflation using the CPI for 2020.  
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A relative index was considered as an alternative federal cotton commodity variable. The 

relative index for each county shows how payments have changed over time since 2008. It is 

unaffected by fluctuating participation rates but does not account for acres planted. First, each 

year’s real total payments were divided by the 2008 payment. This lets 2008 equal 1.0 in the 

index. Values greater than 1.0 indicate an increase in payments compared to 2008 and the 

opposite is true for values less than 1.0. This procedure is repeated for each of the three counties 

(Maricopa, Pinal, and Pima). This preliminary variable was abandoned for the preferred per acre 

commodity payment variable.  

ERS Data Summary & Procedures 

 To construct the index reflecting costs of cotton production, the Value of Production less 

Operating Costs for the Fruitful Rim cotton from 2008-2020 is first adjusted to 2020$. Using 

these real dollar values for the value of production less operating cost, the construction procedure 

of a relative index is similar to the one constructed for the EWG commodity payments. Each 

year’s real value of production is divided by the 2008 value of production. The 2008 index value 

equals 1.0. Index values greater than 1.0 indicate greater values of production compared to 2008. 

USDA NASS Crop Yields 

County crop yields for cotton and alfalfa are two of the variables considered for inclusion 

but ultimately not chosen for the final model specifications. They are used in the gross revenue 

measure. For the most part, annual county yields are available for both crops across the study 

region. Some missing years occur. To combat this issue of missing county alfalfa yields for 2019 

and 2020, the percentage of county yields as state yield for each year is taken. This gives an 

annual proportion of state yields for each county. Then take the average of the annual 

proportions from 2012-2018 for Maricopa, Pima, and Pinal separately. That average county 

proportion is multiplied by the state level to get an average of the final two years yields. Pima 

county also has missing observations in 2008, 2013, and 2014. These missing values are filled by 

using the same procedure for estimation of 2019 and 2020 values for all counties. Upland cotton 

yields data are reported through 2020, but just as with the alfalfa yield data from NASS, Pima 

county is missing observations for cotton yields for 2015, 2017, 2018, and 2019. The same 

process as the alfalfa estimation is used but for cotton in Pima county by taking the average 
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proportion of all available years in Pima county from 2008-2020. The average cotton yield 

proportion is then multiplied with the state yield to estimate the Pima county cotton yield.  

Winter wheat is examined in rotation with cotton. County level winter wheat yields are 

not reported by the USDA NASS so state level yields are used instead. The 2019 and 2020 

winter wheat yield values are not reported by the USDA NASS. These observations are 

estimated using the average yield values from 2015-2018. This means that the values for 2019 

and 2020 are equal.  

USDA NASS Crop Prices 

 Arizona winter wheat prices are reported through the USDA NASS. The state level price 

is not available from 2011-2014 to preserve farmer privacy. It is also unavailable in 2019 and 

2020. The average wheat price is available for all years in the study and is used to help estimate 

the winter wheat price. The proportion of winter wheat prices to wheat prices is calculated for 

years with available winter wheat price data. These percentages are averaged across all available 

years. This average proportion of wheat price is multiplied by the state wheat price to estimate 

the winter wheat price in years where it is not reported.  
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Table A1: Missing Observations Filled 
Year Cotton 

Payments 
Maricopa 
Alfalfa 
Yield 

Pima 
Alfalfa 
Yield 

Pinal 
Alfalfa 
Yield 

Pima 
Cotton 
Yield 

AZ 
Winter 
Wheat 
Yield 

AZ 
Cotton 
Price 

AZ 
Winter 
Wheat 
Price 

CMID 
Water 

Deliveries 

2008   X      X 

2009          

2010          

2011        X  

2012        X  

2013   X     X  

2014   X     X  

2015     X  X   

2016       X   

2017     X     

2018     X     

2019  X X X X X  X  

2020 X X X X  X  X  
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A.2 San Carlos Irrigation and Drainage District Inclusion Effects 
 The San Carlos Irrigation and Drainage District (SCIDD) is very different from all other 

irrigation districts included in this study. This section details differences in results when SCIDD 

is included in the estimated models. In McGreal and Colby’s (2022) study of central Arizona 

irrigation districts’ water deliveries and irrigation intensity, SCIDD is excluded because of 

structural and functional differences. The SCIDD’s main purpose is to deliver Gila River water 

from San Carlos Lake, a reservoir that has been hit hard by reduced water supply in recent years 

(McGreal and Colby, 2022; Tronstad, 2022). Cotton farmers in SCIDD have been responsible for 

a large share of Arizona indemnity claims because the failure of their water supply preventing 

planting. These factors are considered in this study by estimating irrigation district crop mix and 

water deliveries with SCIDD included and excluded. Differences arise in both models mainly in 

the form of weather variables. This is not particularly surprising because of the precarious 

situation SCIDD and their reservoir water source have been in in recent years. Ultimately, the 

differences between SCIDD and the fourteen irrigation districts in this study lead to the 

exclusion of SCIDD from the final model results.  

 The final choice alfalfa model results in Table 9 are estimated without the inclusions of 

the SCIDD. Results between the two alfalfa models estimated without SCIDD and with SCIDD 

are mostly consistent. Table A2 shows the results for the SCIDD percentage alfalfa fixed-effects 

model. The R2 Within of 0.2201 and the R2 Between of 0.5271 are nearly equivalent to the model 

results in Table 9. The most noticeable difference between the alfalfa models is the 

insignificance of precipitation when estimating with SCIDD included in the dataset. This result 

persists in multiple variations of the crop mix models.  

 The results for the SCIDD water deliveries model are contained in Table A3. The two 

water deliveries models estimated with and without SCIDD have the same statistically 

significant variables, precipitation and gross revenue of cotton + wheat; however, the level of 

significance is greater when SCIDD is excluded. Both the R2 Within and the R2 Between are 

higher. In preliminary OLS water deliveries models, some differences in variable significance 

did exist. For example, when the ratio of gross revenue lagged variable is included, temperature 

instead of precipitation is significant in the SCIDD model. The size of estimated coefficients also 

changes between models. In the SCIDD water deliveries model, the constant is estimated as 
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38,281 AF which is much lower than the constant estimated in the model in Table 9 (92,476 AF). 

These differences between models are likely a consequence of the obvious structural differences 

and issues with water supply security between SCIDD and other irrigation districts.  
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Table A2: Fixed-Effects Percent Planted Alfalfa Model Results (SCIDD) 
 

  Percent Alfalfa 
R2 Within 0.2201 

R2 Between 0.5271 
n 195 

Lagged Precipitation 0.0433 
  (0.0251) 

Federal Cotton Payments -0.0001*** 
per Acre (0.00004) 

Lagged Alfalfa Gross Revenue 0.00006** 
  (0.00002) 

Lagged Cotton + Wheat -0.00004* 
Gross Revenue (0.00002) 

Constant 0.4845 
Robust standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) level. 

  



109 
 

  

Table A3: Fixed-Effects Water Deliveries Model Results (SCIDD) 
 

  Water Deliveries  
R2 Within 0.2746 

R2 Between 0.1297 
n 195 

Temperature 573.02 
  (1,126.20) 

Precipitation -10,327.81** 
  (4,791.38) 

CAP Water Price -138.75 
  (88.93) 

Alfalfa Gross Revenue -8.59 
  (7.15) 

Cotton + Wheat 21.34*** 
Gross Revenue (5.84) 

Constant 38,281.4 
 Robust standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) level. 
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A.3 Alternative Variables and Models Considered 
Bt cotton costs 

Bt cotton plants are a variety of cotton that has been genetically modified to make it more 

resistant to pests such as the bollworm and budworm. Sall and Tronstad (2021) include a variable 

for the cost of Bt cotton per acre in their econometric analysis of federal crop subsidy programs. 

This variable is explored as a possible explanatory variable. The Mississippi State University 

achieve of Beltwide Cotton Crop Loss database includes annual estimates of losses from cotton 

insect pest and acreage and price of Bt cotton in each state. This resource is used to collect 

Arizona’s annual price of Bt cotton measured in the cost of Bt cotton per acre. As with all 

monetary variables, it is adjusted to 2020$. Due to the low occurrence of Bt cotton in the study 

region, it was ultimately excluded from all final models. 

USDA Economic Research Service – Cotton Value of Production and Costs 
The USDA Economic Research Service (ERS) reports annual estimates for costs and returns of 

twelve major commodities (cotton included) in the US and major production regions. These 

estimates are based on special Agricultural Resource Management Surveys conducted every 4-8 

years and adjusted twice each year with estimates of annual price, acreage, and production 

changes. The ERS then reports the operating costs, allocated overhead, value of production, 

prices, yields, and quantities sold of each commodity (Padilla, 2020). This cost component is 

explored as a possible variable in the econometric models for water deliveries and crop mix 

decisions. The majority of Arizona (including the counties of interest in this study) is located 

within the Fruitful Rim region. The Fruitful Rim contains the greatest share of large and very 

large family and nonfamily farms. It accounts for 8% of US croplands and 22% of production. 

Cotton, fruits, vegetables, and nursery farms dominate the region (ERS, 2000). The USDA ERS 

Commodity Costs and Returns website reports the Cotton Costs and Returns data (ERS, 2022). 

The construction of an index of the value of production less the operating cost is the same as the 

procedure used for county yields as explained in Appendix A.1. The average difference between 

the estimated values for cotton and the actual available Pima cotton yields is less using the 

USDA NASS state yields (-7%) than the ERS regional yield (23%). The cotton yield estimates 

derived from the USDA NASS state yields is preferred. Because the ERS only reports 

commodity costs and returns at the regional level, the index values are the same for each county 

and irrigation district only varying across time. The index shows changes in the value of 
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production less operating costs relative to the 2008 value. Any value greater than 1.0 indicates an 

increase in the real value less operating costs compared to 2008. Each years’ value of production 

less operating cost has been greater than the 2008 value as seen in Figure A1. The regional 

spatial scale of this variable and the lack of an equivalent alfalfa measure are the main reasons 

for its exclusion from the body of this work. 
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Table A4: Alterative Fixed-Effects Percent Planted Cotton Model Results (Gross Revenues) 
 

  Percent Cotton 
R2 Within 0.1753 

R2 Between 0.6901 
n 182 

Lagged Precipitation -0.0237 
  (0.0173) 

Federal Cotton Payments -0.0006* 
per Acre (0.00003) 

Lagged Alfalfa Gross Revenue 0.0001*** 
  (0.00003) 

Lagged Cotton + Wheat 0.00006** 
Gross Revenue (0.00002) 

Constant 0.2809 
Robust standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) level. 
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Table A5: Preliminary Fixed-Effects Precent Planted Alfalfa Model Results 
 

  Percent Alfalfa 
R2 Within 0.2234 

R2 Between 0.5297 
n 182 

Lagged Precipitation 0.0492* 
  (0.0261) 

Federal Cotton Payments -0.0001** 
per Acre (0.00004) 

Lagged Gross Revenue Ratio 0.0597** 
  (0.0262) 

Constant 0.4448 
Robust standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) level. 
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Table A6: Preliminary Fixed-Effects Water Deliveries Model Results 
 

  Water Deliveries  
R2 Within 0.2113 

R2 Between 0.1980 
n 182 

Temperature -386.04 
  (570.95) 

Precipitation -16,177.58*** 
  (4,441.73) 

CAP Water Price -140.60* 
  (77.11) 

Gross Revenue Ratio -17,591.97** 
  (6,203.82) 

Constant 161,285.1 
 Robust standard errors in parentheses. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) level. 
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Figure A1: Real Value of Production less Operating Cost Index for Cotton 

 

Data Source: USDA Economic Research Service 
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A.4 Meetings and Contacts 
Mekha Pereira, Research Assistant 
University of Arizona, Department of Hydrology and Atmospheric Sciences 
mekhapereira@email.arizona.edu 
January 28, 2022 – In person meeting 
Topics: USDA NASS data, CropScape data and scripts, climatic variables from West Wide 
Drought Tracker. 
 
Ashley Hullinger, Program Director, Water RAPIDS 
University of Arizona, Water Resources Research Center 
hullinger@arizona.edu 
February 7, 2022 – In person meeting 
Topics: Collaboration with DRPWRC, Implications of findings for rural communities and 
drought planning, visualization and mapping of data and trends. 
 
Caroline Leary, General Counsel 
Environmental Working Group 
cleary@ewg.org 
February 22, 2022 – Email 
Topics: EWG data request and inquiry regarding 2020 cotton subsidy data. 
 
Daniel Scheitrum, Assistant Professor 
University of Arizona, Department of Applied Economics and Policy Analysis 
dpscheitrum@arizona.edu 
March 9, 2022 – Zoom meeting 
Topics: Energy costs and diesel fuel costs from the U.S. Energy Information Administration as a 
proxy, interpretation of district dummies in fixed-effects models, logit regressions. 
 
Gary Thompson, Professor and Department Head 
University of Arizona, Department of Applied Economics and Policy Analysis 
March 22, 2022 – In person meeting 
gdthomps@email.arizona.edu 
Topics: Modeling functional form and interpretations. Federal crop commodity variable. Crop 
mix dependent variable. 
 
Russell Tronstad, Professor and Extension Specialist 
University of Arizona, Department of Applied Economics and Policy Analysis 
April 4, 2022 – In person meeting 
tronstad@ag.arizona.edu 
Topics: Federal commodity program payments for cotton and their influence on crop mix 
decisions. 
  

mailto:mekhapereira@email.arizona.edu
mailto:hullinger@arizona.edu
mailto:cleary@ewg.org
mailto:dpscheitrum@arizona.edu
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